1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses

[1]  S. Fukuda,et al.  Understanding the role of the gut ecosystem in diabetes mellitus , 2017, Journal of diabetes investigation.

[2]  Noam Shental,et al.  Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine , 2017, Science.

[3]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[4]  T. Spector,et al.  Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. , 2016, Cell systems.

[5]  S. Lynch,et al.  The Human Intestinal Microbiome in Health and Disease. , 2016, The New England journal of medicine.

[6]  C. Robert,et al.  Culture of previously uncultured members of the human gut microbiota by culturomics , 2016, Nature Microbiology.

[7]  Jun Wang,et al.  Metagenome-wide association studies: fine-mining the microbiome , 2016, Nature Reviews Microbiology.

[8]  Marco Fondi,et al.  Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity , 2016, Proceedings of the National Academy of Sciences.

[9]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[10]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[11]  Chitra Dutta,et al.  BPGA- an ultra-fast pan-genome analysis pipeline , 2016, Scientific Reports.

[12]  R. Ley Gut microbiota in 2015: Prevotella in the gut: choose carefully , 2016, Nature Reviews Gastroenterology &Hepatology.

[13]  Jian Yang,et al.  VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on , 2015, Nucleic Acids Res..

[14]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[15]  Elhanan Borenstein,et al.  Extensive Strain-Level Copy-Number Variation across Human Gut Microbiome Species , 2015, Cell.

[16]  Jiachao Zhang,et al.  A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities , 2015, The ISME Journal.

[17]  K. Schleifer,et al.  Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences , 2014, Nature Reviews Microbiology.

[18]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[19]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[20]  Xiaoli Xie,et al.  KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. , 2014, Molecular bioSystems.

[21]  W. D. de Vos,et al.  The first 1000 cultured species of the human gastrointestinal microbiota , 2014, FEMS microbiology reviews.

[22]  J. Tiedje,et al.  Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data , 2014, mBio.

[23]  Jizhong Zhou,et al.  A Proposed Genus Boundary for the Prokaryotes Based on Genomic Insights , 2014, Journal of bacteriology.

[24]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[25]  Ari Löytynoja,et al.  Phylogeny-aware alignment with PRANK. , 2014, Methods in molecular biology.

[26]  S. Fukuda,et al.  Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach , 2014, Seminars in Immunopathology.

[27]  Alexandros Stamatakis,et al.  Metagenomic species profiling using universal phylogenetic marker genes , 2013, Nature Methods.

[28]  P. Bork,et al.  Accurate and universal delineation of prokaryotic species , 2013, Nature Methods.

[29]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[30]  Johannes Söding,et al.  kClust: fast and sensitive clustering of large protein sequence databases , 2013, BMC Bioinformatics.

[31]  Jian Wang,et al.  Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota , 2013, Nature Communications.

[32]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[33]  Oscar P. Kuipers,et al.  BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides , 2013, Nucleic Acids Res..

[34]  T. Wiele,et al.  Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model , 2012, The ISME Journal.

[35]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[36]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[37]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[38]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[39]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[40]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[41]  J. Chun,et al.  Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. , 2012, International journal of systematic and evolutionary microbiology.

[42]  J. Kuehl,et al.  The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant , 2011, PloS one.

[43]  Haixu Tang,et al.  RAPSearch: a fast protein similarity search tool for short reads , 2011, BMC Bioinformatics.

[44]  Y. Hannun,et al.  Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine , 2010, Proceedings of the National Academy of Sciences.

[45]  B. Haas,et al.  A Catalog of Reference Genomes from the Human Microbiome , 2010, Science.

[46]  Yoko Eguchi,et al.  Two-component signal transduction as potential drug targets in pathogenic bacteria. , 2010, Current opinion in microbiology.

[47]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[48]  H. Flint,et al.  Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. , 2010, Environmental microbiology.

[49]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[50]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[51]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[52]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[53]  Harry J. Flint,et al.  Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. , 2009, FEMS microbiology letters.

[54]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[55]  Joshua N. Adkins,et al.  Comparative Bacterial Proteomics: Analysis of the Core Genome Concept , 2008, PloS one.

[56]  Jason M Gee,et al.  The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence , 2007, Molecular microbiology.

[57]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[58]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[59]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[60]  Mark Borodovsky,et al.  GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses , 2005, Nucleic Acids Res..

[61]  Jun Yu,et al.  VFDB: a reference database for bacterial virulence factors , 2004, Nucleic Acids Res..

[62]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[63]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[64]  Christine Josenhans,et al.  The role of motility as a virulence factor in bacteria. , 2002, International journal of medical microbiology : IJMM.

[65]  L. Rossetti,et al.  An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria. , 2000, Journal of microbiological methods.

[66]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[67]  T. Sanders,et al.  Metabolism of oestrogens and phytoestrogens: role of the gut microflora. , 1999, Biochemical Society transactions.

[68]  M. Neal Guentzel,et al.  Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus , 1996 .

[69]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .