Stochastic fracture analysis of laminated composite plate with arbitrary cracks using X-FEM

In this paper, second order statistics of mixed mode stress intensity factors (MSIFs) and crack propagation analysis of the symmetric angle ply laminated composite plate with through thickness arbitrary curve cracks subjected to tensile and shear stress is presented. The fracture behaviour is analysed using extended finite element method (X-FEM). The cracks like line, semi elliptical, semi circular and arbitrary curves are considered for the detailed numerical study. The material properties, lamination angle, loading, crack width and crack depth are modelled as independent, combine uncorrelated and correlated input random Gaussian variables. The interaction integral (M-integral) is adopted for calculating the MSIFs. The second order perturbation technique and Monte Carlo simulations are proposed to obtain the mean and coefficient of variance of MSIFs by random change in input system parameters. This work signifies the accurate and realistic evaluation of fracture response by handling the various levels of uncertainties. The effect of crack propagation on MSIFs using tensile and shear stresses using global tracking algorithm is also highlighted.

[1]  S. A. Fawaz,et al.  Stress intensity factor solutions for part-elliptical through cracks , 1999 .

[2]  N. Sukumar,et al.  Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method , 2010 .

[3]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[4]  Alireza Asadpoure,et al.  Modeling crack in orthotropic media using a coupled finite element and partition of unity methods , 2006 .

[5]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[6]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[7]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[8]  M. Dhanasekar,et al.  Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation , 2004 .

[9]  Ahmad Kamal Ariffin,et al.  Probabilistic analysis of linear elastic cracked structures , 2007 .

[10]  C. Soares,et al.  Stress concentration/intensity around elliptical/circular cylinder shaped surface flaws in cross-ply plates and validity of St. Venant’s principle in the presence of interacting singularities , 2013 .

[11]  J. Dolbow,et al.  A note on enrichment functions for modelling crack nucleation , 2003 .

[12]  T. Hida Stationary Stochastic Processes , 1970 .

[13]  Hung Nguyen-Xuan,et al.  A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics , 2013, J. Appl. Math..

[14]  J. Chang,et al.  Computation of mixed-mode stress intensity factors for curved cracks in anisotropic elastic solids , 2007 .

[15]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[16]  Alireza Asadpoure,et al.  Crack analysis in orthotropic media using the extended finite element method , 2006 .

[17]  James C. Newman,et al.  Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates , 1979 .

[18]  M. Kaminski,et al.  Analysis of a compression shear fracture test for curved interfaces in layered composites , 2004 .

[19]  T. Rabczuk,et al.  Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters , 2015 .

[20]  Zhongmin Xiao,et al.  Elastic–plastic stress investigation for an arc-shaped interface crack in composite material , 2014 .

[21]  Chongmin Song,et al.  Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method , 2011 .

[22]  Khader M. Hamdia,et al.  Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS , 2015 .

[23]  J. Yang,et al.  On statistical moments of fatigue crack propagation , 1983 .

[24]  Ranjan Ganguli,et al.  Effect of matrix cracking and material uncertainty on composite plates , 2010, Reliab. Eng. Syst. Saf..

[25]  Jianmin Qu,et al.  An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields , 2007 .

[26]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[27]  Sharif Rahman,et al.  Stochastic multiscale fracture analysis of three-dimensional functionally graded composites , 2011 .

[28]  R. T. Faal,et al.  Stress analysis of orthotropic planes weakened by cracks , 2007 .

[29]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[30]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[31]  H. Wu,et al.  On stress concentrations for isotropic/orthotropic plates and cylinders with a circular hole , 2003 .

[32]  Ahmed Al-Ostaz,et al.  Developing a stochastic model to predict the strength and crack path of random composites , 2007 .

[33]  Ted Belytschko,et al.  On XFEM applications to dislocations and interfaces , 2007 .

[34]  S. K. Panda,et al.  The influence of ply sequence and thermoelastic stress field on asymmetric delamination crack growth behavior of embedded elliptical delaminations in laminated FRP composites , 2006 .

[35]  S. Rahman,et al.  Continuum shape sensitivity and reliability analyses of nonlinear cracked structures , 2005 .

[36]  F. Erdogan,et al.  Fracture mechanics of orthotropic laminated plates—III. The surface crack problem , 1993 .

[37]  J. Oliver,et al.  Strong discontinuities and continuum plasticity models: the strong discontinuity approach , 1999 .

[38]  Haim Waisman,et al.  Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures , 2011 .

[39]  Sharif Rahman,et al.  A stochastic model for elastic-plastic fracture analysis of circumferential through-wall-cracked pipes subject to bending , 1995 .

[40]  S. Fariborz,et al.  In-plane stress analysis of an orthotropic plane containing multiple defects , 2007 .

[41]  Günther Meschke,et al.  Crack propagation criteria in the framework of X‐FEM‐based structural analyses , 2007 .

[42]  Mark Hoffman,et al.  Approximation of curved cracks under mixed-mode loading , 2007 .

[43]  M. O. Kaman Effect of fiber orientation on fracture toughness of laminated composite plates [0°/θ°]s , 2011 .

[44]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[45]  N. Sukumar,et al.  New anisotropic crack-tip enrichment functions for the extended finite element method , 2012, Computational Mechanics.

[46]  S. Fawaz,et al.  Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an oblique elliptical crack front , 1998 .

[47]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[48]  P. C. Paris,et al.  On cracks in rectilinearly anisotropic bodies , 1965 .

[49]  Tomoaki Utsunomiya,et al.  Reformulation of XFEM based on PUFEM for solving problem caused by blending elements , 2009 .

[50]  Saeed-Reza Sabbagh-Yazdi,et al.  Orthotropic enriched element free Galerkin method for fracture analysis of composites , 2011 .

[51]  Young Ho Park,et al.  Shape sensitivity analysis in mixed-mode fracture mechanics , 2001 .

[52]  Maria Sandsten,et al.  Stationary Stochastic Processes for Scientists and Engineers , 2013 .

[53]  Won-Ho Yang,et al.  Approximate weight function method for elliptical arc through cracks in mechanical joints , 2003 .

[54]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[55]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[56]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[57]  Young H. Park,et al.  Shape sensitivity and reliability analyses of linear-elastic cracked structures , 2001 .

[58]  J. Sládek,et al.  Evaluation of fracture parameters for crack problems in fgm by a meshless method , 2006 .

[59]  T. Rabczuk,et al.  A Meshfree Thin Shell for Arbitrary Evolving Cracks Based on An Extrinsic Basis , 2006 .

[60]  A. Waas,et al.  Experimental observations and numerical simulations of curved crack propagation in laminated fiber composites , 2012 .

[61]  小山 毅,et al.  拡張有限要素法(XFEM)・一般化有限要素法(GFEM)を用いた材料モデリングのレビュー Ted Belytschko,Robert Gracie and Giulio Ventura:A Review of Extended/Generalized Finite Element Methods for Material Modeling [Modeling and Simulations in Materials Science and Engineering, Vol.17, 043001, June 2009](構造,文献抄録) , 2010 .

[62]  D. P. Rooke,et al.  Anisotropic analysis of cracks emanating from circular holes in composite laminates using the boundary element method , 1994 .

[63]  Y. Lei J-integral and limit load analysis of semi-elliptical surface cracks in plates under tension , 2004 .

[64]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[65]  Ramana V. Grandhi,et al.  Reliability-based Structural Design , 2006 .

[66]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[67]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[68]  Sharif Rahman,et al.  Probabilistic fracture mechanics: J-estimation and finite element methods , 2001 .

[69]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[70]  Yazid Abdelaziz,et al.  Review: A survey of the extended finite element , 2008 .

[71]  Philippe Lorong,et al.  Meshless Methods and Partition of Unity Finite Elements , 2005 .

[72]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[73]  P. S. Chopra,et al.  Probabilistic prediction of multiple fracture under service conditions , 1974 .

[74]  Fracture strength of composite laminates with an elliptical opening , 1987 .

[75]  V. A. Vainshtok,et al.  Stress intensity factor equations for part-elliptical cracks and their verification , 1989 .

[76]  Soheil Mohammadi,et al.  Extended Finite Element Method: for Fracture Analysis of Structures , 2008 .

[77]  Ted Belytschko,et al.  Smoothing, enrichment and contact in the element-free Galerkin method , 1999 .

[78]  T. Tay,et al.  The dugdale solution for cracks at the edge of an elliptical hole in an infinite and finite plate , 1996 .

[79]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[80]  Alireza Asadpoure,et al.  Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method , 2007 .

[81]  C. Hong,et al.  Application of the Jk integral to mixed mode crack problems for anisotropic composite laminates , 1990 .