SUPER-MASSIVE PLANETS AROUND LATE-TYPE STARS—THE CASE OF OGLE-2012-BLG-0406Lb

Super-Jupiter-mass planets should form only beyond the snow line of host stars. However, the core accretion theory of planetary formation does not predict super-Jupiters forming around low-mass hosts. We present a discovery of a 3.9 ± 1.2 M Jup mass planet orbiting the 0.59 ± 0.17 M ☉ star using the gravitational microlensing method. During the event, the projected separation of the planet and the star is 3.9 ± 1.0 AU, i.e., the planet is significantly further from the host star than the snow line. This is the fourth such planet discovered using the microlensing technique and challenges the core accretion theory.

[1]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[2]  K. Ulaczyk,et al.  BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.

[3]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[4]  Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star* , 2006, astro-ph/0606038.

[5]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[6]  OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.

[7]  C. H. Ling,et al.  PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS , 2012, 1203.4560.

[8]  B. Gaudi,et al.  MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy , 2004, astro-ph/0401250.

[9]  A. Udalski,et al.  MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.

[10]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[11]  C. H. Ling,et al.  MOA-2010-BLG-523: “FAILED PLANET” = RS CVn STAR , 2012, 1210.6045.

[12]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[13]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[14]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[15]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[16]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[17]  C. H. Ling,et al.  MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY , 2012, 1211.3782.

[18]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[19]  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[20]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[21]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[22]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[23]  Byeong-Gon Park,et al.  Properties of Central Caustics in Planetary Microlensing , 2005, astro-ph/0505363.

[24]  J. Beaulieu,et al.  GRAVITATIONAL BINARY-LENS EVENTS WITH PROMINENT EFFECTS OF LENS ORBITAL MOTION , 2013, 1306.3744.

[25]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[26]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[27]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.

[28]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[29]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[30]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[31]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[32]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[33]  Andrew Gould,et al.  Planet Parameters in Microlensing Events , 1996, astro-ph/9610123.

[34]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars IV. Two bulge populations , 2011, 1107.5606.

[35]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[36]  C. H. Ling,et al.  A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.

[37]  K. Ulaczyk,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005 .

[38]  A. Gal-Yam,et al.  MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS , 2012, 1201.1002.

[39]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[40]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[41]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[42]  B. Monard,et al.  MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.