Compounds of symmetric informationally complete measurements and their application in quantum key distribution

Symmetric informationally complete measurements (SICs) are elegant, celebrated and broadly useful discrete structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A SIC-compound is defined to be a collection of $d^3$ vectors in $d$-dimensional Hilbert space that can be partitioned in two different ways: into $d$ SICs and into $d^2$ orthonormal bases. While a priori their existence may appear unlikely when $d>2$, we surprisingly answer it in the positive through an explicit construction for $d=4$. Remarkably this SIC-compound admits a close relation to mutually unbiased bases, as is revealed through quantum state discrimination. Going beyond fundamental considerations, we leverage these exotic properties to construct a protocol for quantum key distribution and analyze its security under general eavesdropping attacks. We show that SIC-compounds enable secure key generation in the presence of errors that are large enough to prevent the success of the generalisation of the six-state protocol.

[1]  O. Hesse,et al.  Über die Wendepuncte der Curven dritter Ordnung. (Fortsetzung zu voriger Abhandlung). , 1844 .

[2]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[3]  S. G. Hoggar Two Quaternionic 4-Polytopes , 1981 .

[4]  H. Coxeter,et al.  The Geometric vein : the Coxeter Festschrift , 1981 .

[5]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[6]  N. Gisin,et al.  Optimal Eavesdropping in Quantum Cryptography. I , 1997, quant-ph/9701039.

[7]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[8]  S. Barnett Minimum-error discrimination between multiply symmetric states , 2001 .

[9]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[10]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[11]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[12]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[13]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[14]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[15]  J. Renes Equiangular spherical codes in quantum cryptography , 2004, Quantum Inf. Comput..

[16]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[18]  Markus Grassl,et al.  Generalized decoding, effective channels, and simplified security proofs in quantum key distribution , 2006 .

[19]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[20]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[21]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[22]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[23]  T. V'ertesi,et al.  Two-qubit Bell inequality for which positive operator-valued measurements are relevant , 2010, 1007.2578.

[24]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[25]  Berthold-Georg Englert,et al.  Structure of Two-qubit Symmetric Informationally Complete POVMs , 2010 .

[26]  Denes Petz,et al.  Efficient quantum tomography needs complementary and symmetric measurements , 2010, 1011.5210.

[27]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[28]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[29]  Y. S. Teo,et al.  Two-qubit symmetric informationally complete positive-operator-valued measures , 2010 .

[30]  Huangjun Zhu,et al.  Quantum state tomography with fully symmetric measurements and product measurements , 2011 .

[31]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[32]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[33]  Markus Grassl,et al.  The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..

[34]  Miguel Navascués,et al.  Dimension witnesses and quantum state discrimination. , 2012, Physical review letters.

[35]  A. Delgado,et al.  Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure , 2013 .

[36]  David Marcus Appleby,et al.  Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..

[37]  J. Bae,et al.  Optimal approximate transpose map via quantum designs and its applications to entanglement detection , 2013, 1303.3096.

[38]  Simon Salamon,et al.  Surveying points in the complex projective plane , 2014 .

[39]  Kate Blanchfield Orbits of mutually unbiased bases , 2014 .

[40]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[41]  R. Boyd,et al.  Experimental Realization of Quantum Tomography of Photonic Qudits via Symmetric Informationally Complete Positive Operator-Valued Measures , 2015 .

[42]  Christopher A. Fuchs,et al.  Group theoretic, lie algebraic and Jordan algebraic formulations of the sic existence problem , 2013, Quantum Inf. Comput..

[43]  Miguel Navascués,et al.  Bounding the Set of Finite Dimensional Quantum Correlations. , 2014, Physical review letters.

[44]  Anna Szymusiak,et al.  Informational power of the Hoggar SIC-POVM , 2015, 1512.01735.

[45]  Wojciech Słomczyński,et al.  Informational power of the Hoggar symmetric informationally complete positive operator-valued measure , 2016 .

[46]  Stefano Pironio,et al.  Optimal randomness certification from one entangled bit , 2015, 1505.03837.

[47]  Marcus Appleby,et al.  SICs and Algebraic Number Theory , 2017, 1701.05200.

[48]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[49]  Experimental device-independent certification of a symmetric, informationally complete, positive operator-valued measure , 2018 .

[50]  Robert Fickler,et al.  Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons , 2018, Quantum.

[51]  Armin Tavakoli,et al.  Self-testing quantum states and measurements in the prepare-and-measure scenario , 2018, Physical Review A.

[52]  O. Guhne,et al.  Enhanced entanglement criterion via symmetric informationally complete measurements , 2018, Physical Review A.

[53]  Nicolas Gisin,et al.  Entanglement 25 Years after Quantum Teleportation: Testing Joint Measurements in Quantum Networks , 2018, Entropy.

[54]  M. Pawłowski,et al.  Experimentally feasible semi-device-independent certification of four-outcome positive-operator-valued measurements , 2019, Physical Review A.

[55]  Joonwoo Bae,et al.  Linking entanglement detection and state tomography via quantum 2-designs , 2018, New Journal of Physics.

[56]  Armin Tavakoli,et al.  Enabling Computation of Correlation Bounds for Finite-Dimensional Quantum Systems via Symmetrization. , 2018, Physical review letters.

[57]  Armin Tavakoli Semi-Device-Independent Certification of Independent Quantum State and Measurement Devices. , 2020, Physical review letters.

[58]  K. Życzkowski,et al.  Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs. , 2019, Physical review letters.

[59]  Stockholm University,et al.  Experimental device-independent certification of a symmetric, informationally complete, positive operator-valued measure , 2018 .

[60]  N. Gisin,et al.  The Platonic solids and fundamental tests of quantum mechanics , 2020, Quantum.

[61]  Armin Tavakoli,et al.  Self-testing nonprojective quantum measurements in prepare-and-measure experiments , 2018, Science Advances.

[62]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[63]  Armin Tavakoli,et al.  Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments , 2019, Science Advances.

[64]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.