Zinc and strontium co-substituted hydroxyfluorapatite: Synthesis, sintering and mechanical properties

[1]  Yingchun Zhu,et al.  Environment-Friendly Synthesis of Trace Element Zn, Sr, and F Codoping Hydroxyapatite with Non-cytotoxicity and Improved Osteoblast Proliferation and Differentiation , 2018, Biological Trace Element Research.

[2]  A. Chanda,et al.  Effect of bone morphogenetic protein on Zn-HAp and Zn-HAp/collagen composite: A systematic in vivo study. , 2017, Research in veterinary science.

[3]  E. Mavropoulos,et al.  Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. , 2017, Materials science & engineering. C, Materials for biological applications.

[4]  E. Chibowski,et al.  Synthesis of hydroxyapatite for biomedical applications. , 2017, Advances in colloid and interface science.

[5]  K. Biswas,et al.  Effect of doping (Mg,Mn,Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying , 2017 .

[6]  C. Raja,et al.  Synthesis, characterization and in-vitro studies of strontium-zinc co-substituted fluorohydroxyapatite for biomedical applications , 2016 .

[7]  Wei Liu,et al.  A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. , 2016, Materials science & engineering. C, Materials for biological applications.

[8]  J. Kolmas,et al.  Synthetic hydroxyapatite in pharmaceutical applications , 2016 .

[9]  W. Ching,et al.  Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). , 2015, Journal of the mechanical behavior of biomedical materials.

[10]  A. Muñoz,et al.  Mechanical properties and corrosion behavior of Mg-HAP composites. , 2014, Journal of the mechanical behavior of biomedical materials.

[11]  F. Severcan,et al.  Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite , 2014 .

[12]  L. Kavitha,et al.  Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies , 2014 .

[13]  T. Kamarul,et al.  Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis , 2014 .

[14]  Changsheng Liu,et al.  Development of a bioactive composite of nano fluorapatite and poly(butylene succinate) for bone tissue regeneration. , 2014, Journal of materials chemistry. B.

[15]  J. Bouaziz,et al.  Influence of the sintering temperature on Young's modulus and the shear modulus of tricalcium phosphate – fluorapatite composites evaluated by ultrasound techniques , 2013 .

[16]  L. Menabue,et al.  Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties , 2012, Journal of Materials Science: Materials in Medicine.

[17]  T. J. Fleming,et al.  Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. , 2011, Journal of the mechanical behavior of biomedical materials.

[18]  L. Estroff,et al.  Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. , 2011, Biomaterials.

[19]  H. Boughzala,et al.  Effect of fluorine on the thermal stability of the magnesium–substituted hydroxyapatite , 2011 .

[20]  A. Aissa,et al.  Synthèse, affinement structural et étude spectroscopique par IR et RMN-MAS des hydroxyapatites mixtes calcium-zinc , 2010 .

[21]  A. Bigi,et al.  Effect of Mg(2+), Sr(2+), and Mn(2+) on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. , 2009, Journal of inorganic biochemistry.

[22]  Y. Leng,et al.  Characterization and structural analysis of zinc-substituted hydroxyapatites. , 2009, Acta biomaterialia.

[23]  D. Fruchart,et al.  Structure electronic and ionic conductivity study versus Ca content in Ca10―xSrx(PO4)6F2 apatites , 2009 .

[24]  M. Tahriri,et al.  The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite , 2009 .

[25]  Qiang Liu,et al.  Preparation, characterization, and stability of calcium zinc hydrophosphate , 2008 .

[26]  E. Landi,et al.  Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. , 2008, Acta biomaterialia.

[27]  Xiupeng Wang,et al.  Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions , 2008, Journal of materials science. Materials in medicine.

[28]  E. Gaudin,et al.  Synthesis and characterization of strontium–lanthanum apatites , 2007 .

[29]  P. Marie Strontium ranelate: New insights into its dual mode of action , 2007 .

[30]  Byung-Soo Kim,et al.  Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[31]  F. Miyaji,et al.  Formation and structure of zinc-substituted calcium hydroxyapatite , 2005 .

[32]  S. P. Nielsen The biological role of strontium , 2004 .

[33]  K. Gross,et al.  Sintered hydroxyfluorapatites--IV: The effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells. , 2004, Biomaterials.

[34]  K. Gross,et al.  Sintered hydroxyfluorapatites. Part II: mechanical properties of solid solutions determined by microindentation. , 2004, Biomaterials.

[35]  K. Gross,et al.  Sintered hydroxyfluorapatites. Part III: sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. , 2004, Biomaterials.

[36]  K. Gross,et al.  Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. , 2003, Biomaterials.

[37]  M. H. Fernandes,et al.  The fluorapatite-anorthite system in biomedicine. , 2003, Biomaterials.

[38]  A. Salah,et al.  Substitution mechanism of alkali metals for strontium in strontium hydroxyapatite , 2003 .

[39]  Noboru Ichinose,et al.  Zinc-releasing calcium phosphate for stimulating bone formation ☆ , 2002 .

[40]  C. Pérez,et al.  Zinc incorporation in human dental calculus. , 2001, Journal of Synchrotron Radiation.

[41]  F. Monteiro,et al.  Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. , 2000, Biomaterials.

[42]  L. Weiss,et al.  In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. , 1999, Journal of biomedical materials research.

[43]  J. Bossert,et al.  Preparation and properties of dense and porous calcium phosphate , 1999 .

[44]  F. Cui,et al.  Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite , 1998, Journal of materials science. Materials in medicine.

[45]  R. Valiev,et al.  Microhardness measurements and the Hall-Petch relationship in an AlMg alloy with submicrometer grain size , 1996 .

[46]  J. Lucas Flourine in the natural environment , 1988 .

[47]  A. McEwan,et al.  Sr-89 therapy: Strontium kinetics in disseminated carcinoma of the prostate , 1986, European Journal of Nuclear Medicine.

[48]  H. Aoki,et al.  Mechanical properties of sintered hydroxyapatite for prosthetic applications , 1981 .