On nilpotent elements of ore extensions

Let R be an associative ring with unity, α be an endomorphism of R and δ an α-derivation of R. We introduce the notion of α-nilpotent p.p.-rings, and prove that the α-nilpotent p.p.-condition extends to various ring extensions. Among other results, we show that, when R is a nil-α-compatible and 2-primal ring with Nil(R) nilpotent, then Nil(R[x; α,δ]) = Nil(R)[x; α,δ]; and when R is a nil Armendriz ring of skew power series type with Nil(R) nilpotent, then Nil(R[[x; α]]) = Nil(R)[[x; α]], where Nil(R) is the set of nilpotent elements of R. These results extend existing results to a more general setting.

[1]  Sana Hizem A note on nil power serieswise Armendariz rings , 2010 .

[2]  Ramon Antoine Nilpotent elements and Armendariz rings , 2008 .

[3]  Chan Huh,et al.  ON II-ARMENDARIZ RINGS , 2007 .

[4]  Zhongkui Liu,et al.  On Weak Armendariz Rings , 2006 .

[5]  T. Kwak,et al.  Extensions of Generalized Armendariz Rings , 2006 .

[6]  C. Kim,et al.  NILRADICALS OF POWER SERIES RINGS AND NIL POWER SERIES RINGS , 2005 .

[7]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[8]  G. Marks ON 2-PRIMAL ORE EXTENSIONS , 2001 .

[9]  A. Smoktunowicz Polynomial Rings over Nil Rings Need Not Be Nil , 2000 .

[10]  D. D. Anderson,et al.  Armendariz rings and gaussian rings , 1998 .

[11]  T. Lam,et al.  Primeness, semiprimeness and prime radical of ore extensions , 1997 .

[12]  G. Marks Direct Product and Power Series Formations Over 2-Primal Rings , 1997 .

[13]  E. Armendariz A note on extensions of Baer and P. P. -rings , 1974, Journal of the Australian Mathematical Society.

[14]  T. Lenagan Nil ideals in rings with finite Krull dimension , 1974 .

[15]  H. Bell Near-rings in which each element is a power of itself , 1970, Bulletin of the Australian Mathematical Society.

[16]  Charles Lanski Nil Subrings of Goldie Rings are Nilpotent , 1969, Canadian Journal of Mathematics.

[17]  I. Herstein,et al.  Nil Rings Satisfying Certain Chain Conditions , 1964, Canadian Journal of Mathematics.

[18]  A. S. Amitsur Algebras over infinite fields , 1956 .