A Self-Evolving WiFi-based Indoor Navigation System Using Smartphones

Given a wide spectrum of demands for indoor location-based service, great research effort has been devoted to developing indoor navigation systems. Nevertheless, due to high engineering complexity and expensive infrastructure and labor cost, scalable indoor navigation is still an unsolved problem. In this paper, we present SWiN, a Self-evolving WiFi-based Indoor Navigation system. SWiN provides plug-and-play and light-weight indoor navigation in a sharing manner. To alleviate the impact of the environmental change and device diversity, SWiN extracts both the static and dynamic properties of WiFi signals including scanned AP list, variations of signal strength, and AP's relative strength order. SWiN exploits the leader-follower structure, navigating following users by tracking their motion patterns to provide real-time navigation guidance. In specific, during navigation, SWiN utilizes a light-weight synchronization algorithm to synchronize multi-dimensional WiFi measurements between leader and follower traces. Furthermore, a trace updating mechanism is developed to guarantee the long-term utility of SWiN by extracting useful information in followers’ traces. Consolidating these techniques, we implement SWiN on commodity smartphones, and evaluate its performance in a five-story office building and a newly opened two-story shopping mall with test areas over <inline-formula><tex-math notation="LaTeX">$8000\;\mathrm {m}^2$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>8000</mml:mn><mml:mspace width="0.277778em"/><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="he-ieq1-2915221.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$6000\;\mathrm {m}^2$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>6000</mml:mn><mml:mspace width="0.277778em"/><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="he-ieq2-2915221.gif"/></alternatives></inline-formula>, respectively. Our experimental results show that 95 percent of the tracking offsets during navigation are less than <inline-formula><tex-math notation="LaTeX">$2\;\mathrm {m}$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mspace width="0.277778em"/><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="he-ieq3-2915221.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$3.2\;\mathrm {m}$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>2</mml:mn><mml:mspace width="0.277778em"/><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="he-ieq4-2915221.gif"/></alternatives></inline-formula> in these two environments.

[1]  Song Liu,et al.  SmartLight: Light-weight 3D Indoor Localization Using a Single LED Lamp , 2017, SenSys.

[2]  Marco Dionigi,et al.  Magnetic Field-Based Positioning Systems , 2017, IEEE Communications Surveys & Tutorials.

[3]  Ram Dantu,et al.  Magnetic Maps for Indoor Navigation , 2011, IEEE Transactions on Instrumentation and Measurement.

[4]  Shibo He,et al.  A Robust and Efficient Algorithm for Coprime Array Adaptive Beamforming , 2017, IEEE Transactions on Vehicular Technology.

[5]  Guobin Shen,et al.  Walkie-Markie: Indoor Pathway Mapping Made Easy , 2013, NSDI.

[6]  Abdelaziz Benallegue,et al.  Attitude Optimal Backstepping Controller Based Quaternion for a UAV , 2016 .

[7]  Mark Euston,et al.  A complementary filter for attitude estimation of a fixed-wing UAV , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Naser El-Sheimy,et al.  Evaluation of Two WiFi Positioning Systems Based on Autonomous Crowdsourcing of Handheld Devices for Indoor Navigation , 2016, IEEE Transactions on Mobile Computing.

[9]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[10]  Ali Taylan Cemgil,et al.  Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons , 2017, Sensors.

[11]  Mario Gerla,et al.  FreeLoc: Calibration-free crowdsourced indoor localization , 2013, 2013 Proceedings IEEE INFOCOM.

[12]  Paul Newman,et al.  Opportunistic Radio Assisted Navigation for Autonomous Ground Vehicles , 2015, 2015 International Conference on Distributed Computing in Sensor Systems.

[13]  John F. Raquet,et al.  Magnetic field navigation in an indoor environment , 2010, 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service.

[14]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[15]  Grigore Burloiu An online audio alignment tool for live musical performance , 2014, 2014 11th International Symposium on Electronics and Telecommunications (ISETC).

[16]  Yanyong Zhang,et al.  The Case for Efficient and Robust RF-Based Device-Free Localization , 2016, IEEE Transactions on Mobile Computing.

[17]  Archan Misra,et al.  Follow-My-Lead: Intuitive Indoor Path Creation and Navigation Using Interactive Videos , 2017, CHI.

[18]  Mun Choon Chan,et al.  Pallas: Self-Bootstrapping Fine-Grained Passive Indoor Localization Using WiFi Monitors , 2017, IEEE Transactions on Mobile Computing.

[19]  Jian Lu,et al.  FTrack: Infrastructure-free floor localization via mobile phone sensing , 2012, 2012 IEEE International Conference on Pervasive Computing and Communications.

[20]  Hongwei Xie,et al.  A Reliability-Augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization on Smartphone , 2016, IEEE Transactions on Mobile Computing.

[21]  Jiming Chen,et al.  Narrowband Internet of Things: Implementations and Applications , 2017, IEEE Internet of Things Journal.

[22]  Swarun Kumar,et al.  Decimeter-Level Localization with a Single WiFi Access Point , 2016, NSDI.

[23]  Yunhao Liu,et al.  Peer-to-Peer Indoor Navigation Using Smartphones , 2017, IEEE Journal on Selected Areas in Communications.

[24]  Jiming Chen,et al.  Indoor Navigation Leveraging Gradient WiFi Signals , 2017, SenSys.

[25]  Jiming Chen,et al.  Gradient-Based Fingerprinting for Indoor Localization and Tracking , 2016, IEEE Transactions on Industrial Electronics.

[26]  Yunhao Liu,et al.  Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[27]  Yunhao Liu,et al.  Incentives for Mobile Crowd Sensing: A Survey , 2016, IEEE Communications Surveys & Tutorials.

[28]  Wan-Suk Yoo,et al.  Suggested new element reference frame for dynamic analysis of marine cables , 2017 .

[29]  Byung-Cheol Min,et al.  Indoor Navigation Aid System Using No Positioning Technique for Visually Impaired People , 2017, HCI.

[30]  Guobin Shen,et al.  Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service , 2014, MobiCom.

[31]  Jian Lu,et al.  B-Loc: Scalable Floor Localization Using Barometer on Smartphone , 2014, 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems.

[32]  Jiming Chen,et al.  Last-Mile Navigation Using Smartphones , 2015, MobiCom.

[33]  Mo Li,et al.  Travi-Navi: self-deployable indoor navigation system , 2014, MobiCom.

[34]  Mike Paterson,et al.  Longest Common Subsequences , 1994, MFCS.

[35]  Jianxin Wu,et al.  GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation , 2015, IEEE Transactions on Mobile Computing.

[36]  Injong Rhee,et al.  ACMI: FM-Based Indoor Localization via Autonomous Fingerprinting , 2016, IEEE Transactions on Mobile Computing.

[37]  Hong Yuan,et al.  A novel method of WiFi fingerprint positioning using spatial multi-points matching , 2016, 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[38]  Guang Yang,et al.  Promoting Cooperation by the Social Incentive Mechanism in Mobile Crowdsensing , 2017, IEEE Communications Magazine.

[39]  Romit Roy Choudhury,et al.  Did you see Bob?: human localization using mobile phones , 2010, MobiCom.

[40]  Yuriy S. Shmaliy,et al.  UWB-Based Indoor Human Localization With Time-Delayed Data Using EFIR Filtering , 2017, IEEE Access.

[41]  Dongsoo Han,et al.  Unsupervised Learning for Crowdsourced Indoor Localization in Wireless Networks , 2016, IEEE Transactions on Mobile Computing.

[42]  Xiaolin Li,et al.  Guoguo: Enabling Fine-Grained Smartphone Localization via Acoustic Anchors , 2016, IEEE Transactions on Mobile Computing.