Minimal Strong Foliations in Skew-products of Iterated Function Systems

We study locally constant skew-product maps over full shifts of finite symbols with arbitrary compact metric spaces as fiber spaces. We introduce a new criterion to determine the density of leaves of the strong unstable (and strong stable) foliation, that is, for its minimality. When the fiber space is a circle, we show that both strong foliations are minimal for an open and dense set of robust transitive skew-products. We provide examples where either one foliation is minimal or neither is minimal. Our approach involves investigating the dynamics of the associated iterated function system (IFS). We establish the asymptotical stability of the phase space of the IFS when it is a strict attractor of the system. We also show that any transitive IFS consisting of circle diffeomorphisms that preserve orientation can be approximated by robust forward and backward minimal, expanding, and ergodic (with respect to Lebesgue) IFS. Lastly, we provide examples of smooth robust transitive IFSs where either the forward or the backward minimal fails, or both.

[1]  A. Sarizadeh Attractor for minimal iterated function systems , 2023, 2303.12349.

[2]  A. Vince,et al.  Transition phenomena for the attractor of an iterated function system , 2022, Nonlinearity.

[3]  Pablo G. Barrientos,et al.  Ergodicity of non-autonomous discrete systems with non-uniform expansion , 2018, Discrete & Continuous Dynamical Systems - B.

[4]  M. Rypka Stability of multivalued attractor , 2019, Topological Methods in Nonlinear Analysis.

[5]  G. Abdelrahman LAMINATIONS , 2018, Magnetic Core Selection for Transformers and Inductors.

[6]  K. Ciesielski,et al.  Simultaneous Small Coverings by Smooth Functions Under the Covering Property Axiom , 2018 .

[7]  K. Ciesielski,et al.  Differentiability versus continuity: Restriction and extension theorems and monstrous examples , 2018, Bulletin of the American Mathematical Society.

[8]  V. Kleptsyn,et al.  Classification of generic semigroup actions of circle diffeomorphisms , 2018, 1804.00951.

[9]  Pablo G. Barrientos,et al.  Expanding actions: minimality and ergodicity , 2013, 1307.6054.

[10]  Pablo G. Barrientos,et al.  On the chaos game of Iterated Function Systems , 2015, 1506.07101.

[11]  F. Nobili Minimality of invariant laminations for partially hyperbolic attractors , 2014, 1404.5670.

[12]  Michael F. Barnsley,et al.  On the Continuity of the Hutchinson Operator , 2012, Symmetry.

[13]  N. Gourmelon,et al.  Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes , 2014 .

[14]  A. L. Maciel,et al.  A HORSESHOE WITH POSITIVE MEASURE , 2014 .

[15]  Wenlei Wang,et al.  Nonlinearity , 2014, Encyclopedia of Social Network Analysis and Mining.

[16]  A. Navas,et al.  On the ergodic theory of free group actions by real-analytic circle diffeomorphisms , 2013, 1312.4133.

[17]  Pablo G. Barrientos,et al.  Density of fiberwise orbits in minimal iterated function systems , 2013, 1304.1445.

[18]  M. Naghshinehfard,et al.  ON THE FINITENESS PROPERTIES OF GROUPS , 2013 .

[19]  A. J. Homburg,et al.  Robust minimality of iterated function systems with two generators , 2013, Ergodic Theory and Dynamical Systems.

[20]  E. Pujals,et al.  Robust Transitivity in Hamiltonian Dynamics , 2011, 1108.6012.

[21]  A. Navas Groups of Circle Diffeomorphisms , 2006, math/0607481.

[22]  Andrew Vince,et al.  Real Projective Iterated Function Systems , 2010, 1003.3473.

[23]  Andres Koropecki,et al.  Transitivity of generic semigroups of area-preserving surface diffeomorphisms , 2009, 0905.0305.

[24]  T. Mátrai Real Analysis Exchange , 2009 .

[25]  A. Navas,et al.  On the question of ergodicity for minimal group actions on the circle , 2008, 0806.1974.

[26]  Shashi M. Srivastava,et al.  A Course on Borel Sets , 1998, Graduate texts in mathematics.

[27]  Juliusz Schauder,et al.  Topological Methods in Nonlinear Analysis , 2008 .

[28]  Joris,et al.  Commentarii Mathematici Helvetici , 2008 .

[29]  U. Bader,et al.  Ergodic Theory and Dynamical Systems , 2013 .

[30]  R. Ures,et al.  SOME RESULTS ON THE INTEGRABILITY OF THE CENTER BUNDLE FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS , 2006, math/0609365.

[31]  C. Bonatti,et al.  MINIMALITY OF STRONG STABLE AND UNSTABLE FOLIATIONS FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS , 2002, Journal of the Institute of Mathematics of Jussieu.

[32]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[33]  Y. Ilyashenko,et al.  Certain new robust properties of invariant sets and attractors of dynamical systems , 1999 .

[34]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[35]  C. Moreira,et al.  Differentiable structures of central Cantor sets , 1997, Ergodic Theory and Dynamical Systems.

[36]  Christian Bonatti,et al.  Persistent nonhyperbolic transitive diffeomorphisms , 1996 .

[37]  É. Ghys,et al.  Sur un groupe remarquable de difféomorphismes du cercle , 1987 .

[38]  Dusa Mc Duff $C^1$-minimal subsets of the circle , 1981 .

[39]  E. Moise Homeomorphisms between Cantor sets , 1977 .

[40]  Numérisation de documents anciens mathématiques,et al.  Annales scientifiques de ľÉcole Normale Supérieure , 1893 .