Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs

This chapter provides a thorough introduction to panel, global, and factor augmented vector autoregressive models. These models are typically used to capture interactions across units (i.e., countries) and variable types. Since including a large number of countries and/or variables increases the dimension of the models, all three approaches aim to decrease the dimensionality of the parameter space. After introducing each model, we briefly discuss key specification issues. A running toy example serves to highlight this point and outlines key differences across the different models. To illustrate the merits of the competing approaches, we perform a forecasting exercise and show that it pays off to introduce cross-sectional information in terms of forecasting key macroeconomic quantities.

[1]  E. Moench Forecasting the Yield Curve in a Data-Rich Environment: A No-Arbitrage Factor-Augmented VAR Approach , 2006, SSRN Electronic Journal.

[2]  Florian Huber,et al.  Adaptive Shrinkage in Bayesian Vector Autoregressive Models , 2019 .

[3]  G. Doppelhofer,et al.  Spillovers from US monetary policy: evidence from a time varying parameter global vector auto‐regressive model , 2019, Journal of the Royal Statistical Society: Series A (Statistics in Society).

[4]  Sandra Eickmeier,et al.  How Do Credit Supply Shocks Propagate Internationally? A Gvar Approach , 2011, SSRN Electronic Journal.

[5]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[6]  Todd E. Clark,et al.  Common Drifting Volatility in Large Bayesian VARs , 2012 .

[7]  Fabio Canova,et al.  Methods for Applied Macroeconomic Research , 2007 .

[8]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[9]  M. Pesaran,et al.  Exploring the International Linkages of the Euro Area: A Global VAR Analysis , 2006, SSRN Electronic Journal.

[10]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[11]  Mark W. Watson,et al.  Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics , 2016 .

[12]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[13]  James D. Hamilton Time Series Analysis , 1994 .

[14]  Fei Han,et al.  ASEAN-5 Macroeconomic Forecasting Using a GVAR Model , 2011 .

[15]  Til Schuermann,et al.  Forecasting Economic and Financial Variables with Global VARs , 2007 .

[16]  Fabio Canova,et al.  Estimating Multicountry VAR Models , 2009 .

[17]  Marek Jarocinski,et al.  Responses to Monetary Policy Shocks in the East and the West of Europe: A Comparison , 2008 .

[18]  M. Arellano,et al.  Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations , 1991 .

[19]  M. Pesaran,et al.  Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model , 2004 .

[20]  Greg M. Allenby,et al.  On the Heterogeneity of Demand , 1998 .

[21]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[22]  Sandra Eickmeier,et al.  Classical Time-Varying FAVAR Models - Estimation, Forecasting and Structural Analysis , 2011, SSRN Electronic Journal.

[23]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[24]  Tim Ng,et al.  Forecasting National Activity Using Lots of International Predictors: An Application to New Zealand , 2011, SSRN Electronic Journal.

[25]  Fabio Canova,et al.  Forecasting and Turning-Point Predictions in a Bayesian Panel VAR Model , 2004 .

[26]  Yi Wen,et al.  Inflation Dynamics: A Cross-Country Investigation , 2006 .

[27]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[28]  Alexander Chudik,et al.  A Multi-Country Approach to Forecasting Output Growth Using PMIs , 2014, SSRN Electronic Journal.

[29]  S. Frühwirth-Schnatter,et al.  Bayesian Analysis of the Heterogeneity Model , 2004 .

[30]  Florian Huber Density forecasting using Bayesian global vector autoregressions with stochastic volatility , 2016 .

[31]  Dimitris Korobilis,et al.  Model Uncertainty in Panel Vector Autoregressive Models , 2014 .

[32]  Dimitris Korobilis,et al.  Forecasting with High‐Dimensional Panel Vars , 2019, Oxford Bulletin of Economics and Statistics.

[33]  Florian Huber,et al.  The international transmission of US shocks—Evidence from Bayesian global vector autoregressions , 2016 .

[34]  Massimiliano Marcellino,et al.  Forecasting with Factor-Augmented Error Correction Models , 2010 .

[35]  Florian Huber,et al.  Does Joint Modelling of the World Economy Pay Off? Evaluating Global Forecasts from a Bayesian GVAR , 2015 .

[36]  Y. Shin,et al.  Probabilistic forecasting of output growth, inflation and the balance of trade in a GVAR framework , 2012 .

[37]  Jochen Güntner,et al.  Forecasting Inflation Across Euro Area Countries and Sectors: A Panel VAR Approach , 2016 .

[38]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[39]  Florian Gerber,et al.  gsbDesign: An R Package for Evaluating the Operating Characteristics of a Group Sequential Bayesian Design , 2016 .

[40]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[41]  Florian Huber,et al.  Forecasting with Global Vector Autoregressive Models: a Bayesian Approach , 2016 .

[42]  Manfred M. Fischer,et al.  The regional transmission of uncertainty shocks on income inequality in the United States , 2019, Journal of Economic Behavior & Organization.

[43]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[44]  Serena Ng,et al.  Working Paper Series , 2019 .

[45]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .