Heavy ozone distribution in the stratosphere from far-infrared observations

The distribution of isotopically heavy ozone in the stratosphere has been obtained from an analysis of balloon-based high-resolution thermal emission spectra in the far infrared. The mixing ratio profiles of 16O16O18O and 16O18O 16O retrieved from inversion of several limb sequences of a number of spectral lines in the 39–76 cm−1 region, indicate enhancements over the expected values in the 25- to 37-km altitude range. The ratio of total heavy isotopic ozone 50O3 to normal 48O3 shows enhancements of ∼45% at 37 km, decreasing to a minimum of ∼13% at ∼29 km, and increasing to ∼18% at 25 km. The results from this work are compared with Mauersberger's (1987) in situ mass spectrometer measurements.

[1]  Jack A. Kaye,et al.  Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry , 1986 .

[2]  Kenneth M. Evenson,et al.  Air‐ and oxygen‐broadening coefficients for the O2 rotational line at 60.46 cm−1 , 1987 .

[3]  V. Malathy Devi,et al.  Identification of 18O-isotopic lines of ozone in infrared ground-based solar absorption spectra , 1985 .

[4]  J. Kaye,et al.  Comment on “Heavy ozone in the stratosphere” , 1987 .

[5]  B. Carli,et al.  Stratospheric distribution of HCN from far infrared observations , 1987 .

[6]  B. Carli,et al.  Stratospheric O3, H2O, and HDO distributions from balloon‐based far‐infrared observations , 1987 .

[7]  A Goldman,et al.  AFGL atmospheric absorption line parameters compilation: 1982 edition. , 1981, Applied optics.

[8]  Laurence S. Rothman,et al.  Theoretical N_2-broadened halfwidths of ^16O_3 , 1985 .

[9]  R. Cicerone,et al.  Photodissociation of isotopically heavy O 2 as a source of atmospheric O 3 , 1980 .

[10]  B. Carli,et al.  New assignments in the submillimeter emission spectrum of the stratosphere , 1982 .

[11]  Konrad Mauersberger,et al.  Ozone isotope measurements in the stratosphere , 1987 .

[12]  Laurence S. Rothman,et al.  Theoretical N2-, O2-, and air-broadened halfwidths of 16O3 calculated by quantum Fourier transform theory with realistic collision dynamics , 1985 .

[13]  R. D. Zafra,et al.  A measurement of stratospheric HO2 by ground‐based millimeter‐wave spectroscopy , 1984 .

[14]  Konrad Mauersberger,et al.  Measurement of heavy ozone in the stratosphere , 1981 .

[15]  B Carli,et al.  Submillimeter high-resolution FT spectrometer for atmospheric studies. , 1984, Applied optics.

[16]  M. Thiemens,et al.  The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications , 1983, Science.

[17]  M. Thiemens,et al.  A non‐mass‐dependent isotope effect in the production of ozone from molecular oxygen , 1983 .

[18]  B. Conrath,et al.  Method for correction of errors in observation angles for limb thermal emission measurements. , 1984, Applied optics.

[19]  M. Abbas,et al.  Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms. , 1981, Applied optics.

[20]  Hans J. Liebe,et al.  An updated model for millimeter wave propagation in moist air , 1985 .

[21]  M. Thiemens,et al.  A non‐mass‐dependent oxygen isotope effect in the production of ozone from molecular oxygen: The role of molecular symmetry in isotope chemistry , 1986 .

[22]  S. Gibson,et al.  Photodissociation of 16O18O in the atmosphere , 1984 .

[23]  Jack A. Kaye,et al.  Mechanisms and observations for isotope fractionation of molecular species in planetary atmospheres , 1987 .

[24]  D. R. Bates Heavy ozone in the stratosphere , 1986 .

[25]  D. Strobel,et al.  Enhancement of heavy ozone in the Earth's atmosphere? , 1983 .

[26]  B. Carli,et al.  Far infrared remote sounding of stratospheric temperature and trace gas distributions , 1984 .

[27]  J. Brault Solar Fourier transform spectroscopy. , 1978 .