The Minimum Entropy Output of a Quantum Channel Is Locally Additive

We show that the minimum von Neumann entropy output of a quantum channel is locally additive. Hastings' counterexample for the additivity conjecture makes this result quite surprising. In particular, it indicates that the nonadditivity of the minimum entropy output is a global effect of quantum channels.

[1]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[2]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[3]  N. Wallach,et al.  Entanglement of Subspaces and Error Correcting Codes , 2007, 0704.0251.

[4]  Shmuel Friedland Extremal eigenvalue problems , 1978 .

[5]  Ivan Nourdin,et al.  Wigner chaos and the fourth moment , 2010, 1009.3949.

[6]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[7]  Christopher King,et al.  Comments on Hastings’ Additivity Counterexamples , 2009, 0905.3697.

[8]  Christopher King Maximal p-norms of entanglement breaking channels , 2003, Quantum Inf. Comput..

[9]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[10]  Peter W. Shor,et al.  The Additivity Conjecture in Quantum Information Theory , 2005 .

[11]  Maksim E. Shirokov,et al.  On the structure of optimal sets for a quantum channel , 2006, Probl. Inf. Transm..

[12]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[13]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[14]  A. Holevo Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory , 2006 .

[15]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[18]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[19]  J Eisert,et al.  Entangled inputs cannot make imperfect quantum channels perfect. , 2010, Physical review letters.

[20]  Lars-Ake Levin,et al.  Problems of Information Transmission , 1973 .

[21]  K. Audenaert,et al.  Communications in Mathematical Physics On Strong Superadditivity of the Entanglement of Formation , 2004 .

[22]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[23]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[24]  Tosio Kato Perturbation theory for linear operators , 1966 .

[25]  Michal Horodecki,et al.  On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..

[26]  M. Fannes,et al.  Additivity of minimal entropy output for a class of covariant channels , 2004, quant-ph/0410195.

[27]  S. Turgut Catalytic transformations for bipartite pure states , 2007 .

[28]  Alexander S. Holevo,et al.  The additivity problem in quantum information theory , 2006 .

[29]  Aidan Roy,et al.  Local extrema of entropy functions under tensor products , 2011, Quantum Inf. Comput..

[30]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[31]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[32]  L. Maccone,et al.  The bosonic minimum output entropy conjecture and Lagrangian minimization , 2009 .