Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium

In this paper, we formulate a fractional thermal wave model for a bi-layered spherical tissue. Implicit finite difference method is employed to obtain the solution of the direct problem. The inverse analysis for simultaneously estimating the Caputo fractional derivative and the relaxation time parameters is implemented by means of the Levenberg-Marquardt method. Compared with the experimental data, we can obviously find out that the estimated temperature increase values are excellently consistent with the measured temperature increase values in the experiment. We have also discussed the effect of the fractional derivative, the relaxation time parameters, the initial guess as well as the sensitivity problem. All the results show that the proposed fractional thermal wave model is efficient and accurate in modeling the heat transfer in the hyperthermia experiment, and the proposed numerical method for simultaneously estimating multiple parameters for the fractional thermal wave model in a spherical composite medium is effective.

[1]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[2]  Diego A. Murio,et al.  Time fractional IHCP with Caputo fractional derivatives , 2008, Comput. Math. Appl..

[3]  Xiaoyun Jiang,et al.  Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative , 2012 .

[4]  Gilles Fourestey,et al.  Solving inverse problems involving the Navier–Stokes equations discretized by a Lagrange–Galerkin method , 2005 .

[5]  Afet Golayoglu Fatullayev,et al.  Comparing numerical methods for inverse coefficient problem in parabolic equation , 2006, Appl. Math. Comput..

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  M. K. Moallemi,et al.  Experimental evidence of hyperbolic heat conduction in processed meat , 1995 .

[8]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[9]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[10]  Liqiu Wang,et al.  Modeling Bioheat Transport at Macroscale , 2011 .

[11]  W. Kaiser,et al.  Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia , 1999 .

[12]  Fawang Liu,et al.  Analytical and numerical solutions of a one-dimensional fractional-in-space diffusion equation in a composite medium , 2010, Appl. Math. Comput..

[13]  Paul J. Antaki,et al.  New Interpretation of Non-Fourier Heat Conduction in Processed Meat , 2005 .

[14]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[15]  Weihua Deng,et al.  Regularization methods for unknown source in space fractional diffusion equation , 2012, Math. Comput. Simul..

[16]  W. Roetzel,et al.  Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure , 2003 .

[17]  F. Marcuzzi,et al.  A parabolic inverse convection-diffusion-reaction problem solved using space-time localization and adaptivity , 2013, Appl. Math. Comput..

[18]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[19]  P. Das,et al.  Analysis of non-Fourier heat conduction using smoothed particle hydrodynamics , 2011 .

[20]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[21]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[22]  Yuan-Hsiang Chu,et al.  An inverse non-Fourier heat conduction problem approach for estimating the boundary condition in electronic device , 2004 .

[23]  Wenchang Tan,et al.  An anomalous subdiffusion model for calcium spark in cardiac myocytes , 2007 .

[24]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[25]  Kuo-Chi Liu,et al.  Solution of an Inverse Heat Conduction Problem in a Bi-Layered Spherical Tissue , 2010 .

[26]  M. Ebrahimian,et al.  A numerical solution of an inverse parabolic problem with unknown boundary conditions , 2007, Appl. Math. Comput..

[27]  W. Kaminski Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure , 1990 .

[28]  Warren B. Powell,et al.  Nested-Batch-Mode Learning and Stochastic Optimization with An Application to Sequential MultiStage Testing in Materials Science , 2015, SIAM J. Sci. Comput..

[29]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[30]  Mehdi Maerefat,et al.  Explicit and implicit finite difference schemes for fractional Cattaneo equation , 2010, J. Comput. Phys..

[31]  Heping Cheng,et al.  Anomalous Subdiffusion of Calcium Spark in Cardiac Myocytes , 2011 .

[32]  Xiaoyun Jiang,et al.  The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes , 2010 .

[33]  H. Qi,et al.  An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid , 2015 .

[34]  Mehdi Maerefat,et al.  An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation , 2012 .

[35]  Yangquan Chen,et al.  Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion , 2011, Comput. Math. Appl..

[36]  Assad A. Oberai,et al.  Adjoint-weighted equation for inverse problems of incompressible plane-stress elasticity , 2009 .

[37]  P. Reihani,et al.  An stable numerical algorithm for identifying the solution of an inverse problem , 2007, Appl. Math. Comput..

[38]  A. Eke,et al.  Fractal characterization of complexity in temporal physiological signals , 2002, Physiological measurement.

[39]  M. N. Özişik,et al.  Inverse Heat Transfer: Fundamentals and Applications , 2000 .

[40]  Xiaoyun Jiang,et al.  Analytical and numerical solutions of time fractional anomalous thermal diffusion equation in composite medium , 2015 .

[41]  Bo Yu,et al.  A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation , 2014, Numerical Algorithms.

[42]  Liancun Zheng,et al.  Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate , 2010 .

[43]  Bangti Jin,et al.  Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation , 2014, SIAM J. Numer. Anal..