Plastic deformation of minerals at high pressure; multiscale numerical modelling

M ultiscale m odelling and com putation is becom ing one of the m ost active research areas inm aterials science. T his evolution is driven by the rapid grow th in available com puting pow erand by the developm ent of m any innovative algorithm s and techniques. In m ineral physics, theissue of m antle rheology, controlled by the deform ation of high-pressure m ineral assem blages,can be addressed by this new approach. In contrast w ith therm odynam ic properties like theequation of state, w hich are fully determ ined at the atom ic length scale, m echanical propertiesare inherently m ultiscale: they depend on the interrelationship betw een processes operating atthe scale of the atom , the crystal, the rock and the w hole planet. M oreover, these different scalesare often strongly coupled to each other, w hich m akes the problem even m ore challenging. Fr om the atoms to the EarthO s mantleM echanical properties of real m aterials are controlled by crystal defects such as pointdefects, dislocations, stacking faults and grain boundaries. T aken individually, these defectscan be described at the fundam ental level through their atom ic and electronic structures,w hich can be found by solving the S chršdinger equation. F irst-principles calculations andm olecular dynam ics are used to address such problem s. A t the scale of a grain, them echanical properties are often the result of the collective behaviour of these defects inresponse to the loading conditions. N ew ly developed three-dim ensional dislocation dyna-EMU Notes in Mineralogy , V ol. 7 (2005), Chapter 16, 389Ð415

[1]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[2]  S. Forest,et al.  Numerical study of creep in two-phase aggregates with a large rheology contrast : implications for the lower mantle , 2005 .

[3]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures , 1977 .

[4]  Y. Bréchet,et al.  A deformation-based model for recrystallization of anisotropic materials , 1997 .

[5]  R. Becker,et al.  Analysis of texture evolution in channel die compression. I, Effects of grain interaction , 1991 .

[6]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[7]  M. F. Kanninen,et al.  A new representation of the strain field associated with the cube‐edge dislocation in a model of a α‐iron , 1972 .

[8]  Georges Cailletaud,et al.  Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials , 2000 .

[9]  M. Payne,et al.  Atomic and electronic structures of the 90° partial dislocation in silicon , 1992 .

[10]  S. Karato,et al.  Plastic deformation of wadsleyite: II. High-pressure deformation in shear , 2003 .

[11]  D. Frost,et al.  Shear deformation experiments of forsterite at 11 Gpa - 1400°C in the multianvil apparatus , 2004 .

[12]  D. Sánchez-Portal,et al.  Simulations of minerals using density-functional theory based on atomic orbitals for linear scaling , 2004 .

[13]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[14]  M. Norgett,et al.  Atomistic calculation of the core structure and Peierls energy of an (a/2) [110] edge dislocation in MgO , 1976 .

[15]  F. Barbe,et al.  Intergranular and intragranular behavior of polycrystalline aggregates.Part 2: Results , 2001 .

[16]  D. Jeulin,et al.  Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model , 2001 .

[17]  Jacques Besson,et al.  Object-Oriented Programming Applied to the Finite Element Method Part I. General Concepts , 1998 .

[18]  P. Cordier,et al.  Plastic deformation of wadsleyite: III. Interpretation of dislocations and slip systems , 2003 .

[19]  Julian D Gale,et al.  Predicting the structure of screw dislocations in nanoporous materials , 2004, Nature materials.

[20]  Jaime Marian,et al.  Dynamic transitions from smooth to rough to twinning in dislocation motion , 2004, Nature materials.

[21]  J. Brodholt Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep , 1997 .

[22]  J Li,et al.  Anisotropic elastic interactions of a periodic dislocation array. , 2001, Physical review letters.

[23]  Georges Cailletaud,et al.  Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries , 2005 .

[24]  Georges Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 1—Model Presentation , 1991 .

[25]  Ladislas P. Kubin,et al.  New Line Model for Optimized Dislocation Dynamics Simulations , 2000 .

[26]  U. F. Kocks,et al.  Simulations of texture development in calcite: Comparison of polycrystal plasticity theories , 1991 .

[27]  M. Darot,et al.  High‐temperature creep of forsterite single crystals , 1981 .

[28]  Frédéric Feyel,et al.  Application du calcul parallèle aux modèles à grand nombre de variables internes , 1998 .

[29]  A. Molinari,et al.  Modelling plastic deformation of peridotite with the self-consistent theory , 1991 .

[30]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[31]  A. Molinari,et al.  Deformation modelling of multi-phase polycrystals: case of a quartz-mica aggregate , 1992 .

[32]  M. Heggie,et al.  First-principles calculations on the structure of hydrogen aggregates in silicon and diamond , 2003 .

[33]  L. Kubin,et al.  Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium , 2004 .

[34]  J. Kratochvíl,et al.  Finite element method analysis of micro-macro transition in polycrystalline plasticity , 1992 .

[35]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[36]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[37]  J. Bascou,et al.  Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites , 2002 .

[38]  Cristian Teodosiu,et al.  Large Plastic Deformations , 2021 .

[39]  G. C. Johnson,et al.  Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models , 1993 .

[40]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[41]  M. Darot,et al.  Dislocations in olivine indented at low temperatures , 1981 .

[42]  S. C. Parker,et al.  Atomistic simulation of screw dislocations in rock salt structured materials , 1999 .

[43]  G. Sachs,et al.  Zur Ableitung einer Fließbedingung , 1929 .

[44]  B. Evans,et al.  The temperature variation of hardness of olivine and its implication for polycrystalline yield stress , 1979 .

[45]  P. Gueguen,et al.  Les dislocations dans la forsté rite déformée à haute Tempé rature , 1982 .

[46]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[47]  R. Dovesi,et al.  On the electrostatic potential in linear periodic polymers , 1994 .

[48]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[49]  D. Rubie,et al.  Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus , 2001 .

[50]  H. Wenk,et al.  Modeling dynamic recrystallization of olivine aggregates deformed in simple shear , 1999 .

[51]  Ricardo A. Lebensohn,et al.  Heterogeneous deformation and texture development in halite polycrystals: comparison of different modeling approaches and experimental data , 2003 .

[52]  M. Tang,et al.  Dislocation mobility and the mechanical response of b.c.c. single crystals: A mesoscopic approach , 1998 .

[53]  J. Simmons,et al.  Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations , 1998 .

[54]  Y. Chastel,et al.  Sensitivity of α-ZY4 high-temperature deformation textures to the β-quenched precipitate structure and to recrystallization: Application to hot extrusion , 2000 .

[55]  C. Catlow,et al.  A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite , 2003 .

[56]  B. Devincre,et al.  MODEL VALIDATION OF A 3D SIMULATION OF DISLOCATION DYNAMICS: DISCRETIZATION AND LINE TENSION EFFECTS , 1992 .

[57]  B. Slater,et al.  A computational study of oxygen diffusion in olivine , 2003 .

[58]  N. Ribe,et al.  A kinematic model for recrystallization and texture development in olivine polycrystals , 2001 .

[59]  L. Kubin,et al.  On the Use of Periodic Boundary Conditions in Dislocation Dynamics Simulations , 2004 .

[60]  P. C. Gehlen,et al.  Atomic simulation of the dislocation core structure and Peierls stress in alkali halide , 1976 .

[61]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[62]  A. Tommasi,et al.  Strain‐induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone , 2004 .

[63]  J. Boland,et al.  Olivine as an in situ piezometer in high pressure apparatus , 1988 .

[64]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[65]  K. Kunze,et al.  High shear strain of olivine aggregates: rheological and seismic consequences. , 2000, Science.

[66]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[67]  S. Karato,et al.  Lattice preferred orientation of olivine aggregates deformed in simple shear , 1995, Nature.

[68]  P. C. Gehlen,et al.  Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling , 1978 .

[69]  Dierk Raabe,et al.  Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation , 2001 .

[70]  Y. Chastel,et al.  Viscoplastic self‐consistent and equilibrium‐based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy , 2000 .

[71]  Stephen C. Parker,et al.  Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces , 2000 .

[72]  S. Quilici,et al.  FE simulation of macro-, meso- and micro-scales in polycrystalline plasticity , 1999 .

[73]  J. D. Eshelby Introduction to Anisotropic Elasticity Theory of Dislocations , 1974 .

[74]  F. Barbe,et al.  Numerical study of crystalline plasticity : measurements of the heterogeneities due to grain boundaries under small strains , 2003 .

[75]  S. Forest,et al.  Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches , 2003 .