Robust calibration of numerical models based on relative regret
暂无分享,去创建一个
Laurent Debreu | Elise Arnaud | Arthur Vidard | Victor Trappler | E. Arnaud | A. Vidard | L. Debreu | Victor Trappler
[1] M. Thulin. The cost of using exact confidence intervals for a binomial proportion , 2013, 1303.1288.
[2] James O. Berger,et al. An overview of robust Bayesian analysis , 1994 .
[3] R. W. Lardner,et al. On the estimation of parameters of hydraulic models by assimilation of periodic tidal data , 1991 .
[4] Genaro J. Gutierrez,et al. Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .
[5] D. Freedman,et al. On the histogram as a density estimator:L2 theory , 1981 .
[6] Fengqi You,et al. Optimization under Uncertainty in the Era of Big Data and Deep Learning: When Machine Learning Meets Mathematical Programming , 2019, Comput. Chem. Eng..
[7] Nicolas Gayton,et al. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] Eric Walter,et al. An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..
[10] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[11] James R. Luedtke,et al. A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..
[12] D. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .
[13] R. W. Lardner,et al. VARIATIONAL PARAMETER ESTIMATION FOR A TWO-DIMENSIONAL NUMERICAL TIDAL MODEL , 1992 .
[14] D. Ginsbourger,et al. Towards Gaussian Process-based Optimization with Finite Time Horizon , 2010 .
[15] Rodolphe Le Riche,et al. Simultaneous Kriging-Based Sampling For Optimization And Uncertainty Propagation , 2010 .
[16] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[17] Nicolas Gayton,et al. On the consideration of uncertainty in design: optimization - reliability - robustness , 2016 .
[18] Jean Baccou,et al. Bayesian Adaptive Reconstruction of Profile Optima and Optimizers , 2014, SIAM/ASA J. Uncertain. Quantification.
[19] K. Keller,et al. Neglecting model structural uncertainty underestimates upper tails of flood hazard , 2017, Environmental Research Letters.
[20] Joachim M. Buhmann,et al. Robust optimization in the presence of uncertainty , 2013, ITCS '13.
[21] Arnold W. Heemink,et al. Parameter identification in tidal models with uncertain boundary conditions , 1990 .
[22] Ling Li,et al. Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.
[23] Leonard J. Savage,et al. The Theory of Statistical Decision , 1951 .
[24] Mark S. Daskin,et al. Stochastic p-robust location problems , 2006 .
[25] D. W. Scott. On optimal and data based histograms , 1979 .
[26] Pranay Seshadri,et al. A density-matching approach for optimization under uncertainty , 2014, 1510.04162.
[27] R. Marler,et al. The weighted sum method for multi-objective optimization: new insights , 2010 .
[28] R. Pasupathy,et al. A Guide to Sample Average Approximation , 2015 .
[29] Vincent Baudoui. Optimisation robuste multiobjectifs par modèles de substitution , 2012 .
[30] W. Walker,et al. Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .
[31] Yi Hu,et al. Robust Design of Horizontal Axis Wind Turbines Using Taguchi Method , 2011 .
[32] M. Ribaud. Krigeage pour la conception de turbomachines : grande dimension et optimisation multi-objectif robuste , 2018 .
[33] Julien Marzat,et al. Worst-case global optimization of black-box functions through Kriging and relaxation , 2012, Journal of Global Optimization.
[34] George Kuczera,et al. There are no hydrological monsters, just models and observations with large uncertainties! , 2010 .
[35] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[36] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[37] Alexander Shapiro,et al. Stochastic Approximation approach to Stochastic Programming , 2013 .
[38] Jerome P. Jarrett,et al. Horsetail matching: a flexible approach to optimization under uncertainty* , 2017 .
[39] Philipp Hennig,et al. Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..
[40] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[41] Oleksandr Romanko,et al. Normalization and Other Topics in MultiObjective Optimization , 2006 .
[42] William I. Notz,et al. DESIGNING COMPUTER EXPERIMENTS TO DETERMINE ROBUST CONTROL VARIABLES , 2004 .
[43] Huyse Luc,et al. Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies , 2001 .
[44] Nicolas Gayton,et al. On the consideration of uncertainty in design: optimization - reliability - robustness , 2016, Structural and Multidisciplinary Optimization.
[45] R. Rockafellar,et al. Deviation Measures in Risk Analysis and Optimization , 2002 .
[46] Bernd Bischl,et al. Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement , 2015, GECCO.