Robust calibration of numerical models based on relative regret

Classical methods of calibration usually imply the minimisation of an objective function with respect to some control parameters. This function measures the error between some observations and the results obtained by a numerical model. In the presence of uncontrollable additional parameters that we model as random inputs, the objective function becomes a random variable, and notions of robustness have to be introduced for such an optimisation problem.In this paper, we are going to present how to take into account those uncertainties by defining the relative-regret. This quantity allow us to compare the value of the objective function to its best performance achievable given a realisation of the random additional parameters. By controlling this relative-regret using a probabilistic constraint, we can then define a new family of estimators, whose robustness with respect to the random inputs can be adjusted.

[1]  M. Thulin The cost of using exact confidence intervals for a binomial proportion , 2013, 1303.1288.

[2]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[3]  R. W. Lardner,et al.  On the estimation of parameters of hydraulic models by assimilation of periodic tidal data , 1991 .

[4]  Genaro J. Gutierrez,et al.  Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .

[5]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[6]  Fengqi You,et al.  Optimization under Uncertainty in the Era of Big Data and Deep Learning: When Machine Learning Meets Mathematical Programming , 2019, Comput. Chem. Eng..

[7]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[12]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[13]  R. W. Lardner,et al.  VARIATIONAL PARAMETER ESTIMATION FOR A TWO-DIMENSIONAL NUMERICAL TIDAL MODEL , 1992 .

[14]  D. Ginsbourger,et al.  Towards Gaussian Process-based Optimization with Finite Time Horizon , 2010 .

[15]  Rodolphe Le Riche,et al.  Simultaneous Kriging-Based Sampling For Optimization And Uncertainty Propagation , 2010 .

[16]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[17]  Nicolas Gayton,et al.  On the consideration of uncertainty in design: optimization - reliability - robustness , 2016 .

[18]  Jean Baccou,et al.  Bayesian Adaptive Reconstruction of Profile Optima and Optimizers , 2014, SIAM/ASA J. Uncertain. Quantification.

[19]  K. Keller,et al.  Neglecting model structural uncertainty underestimates upper tails of flood hazard , 2017, Environmental Research Letters.

[20]  Joachim M. Buhmann,et al.  Robust optimization in the presence of uncertainty , 2013, ITCS '13.

[21]  Arnold W. Heemink,et al.  Parameter identification in tidal models with uncertain boundary conditions , 1990 .

[22]  Ling Li,et al.  Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.

[23]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[24]  Mark S. Daskin,et al.  Stochastic p-robust location problems , 2006 .

[25]  D. W. Scott On optimal and data based histograms , 1979 .

[26]  Pranay Seshadri,et al.  A density-matching approach for optimization under uncertainty , 2014, 1510.04162.

[27]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[28]  R. Pasupathy,et al.  A Guide to Sample Average Approximation , 2015 .

[29]  Vincent Baudoui Optimisation robuste multiobjectifs par modèles de substitution , 2012 .

[30]  W. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[31]  Yi Hu,et al.  Robust Design of Horizontal Axis Wind Turbines Using Taguchi Method , 2011 .

[32]  M. Ribaud Krigeage pour la conception de turbomachines : grande dimension et optimisation multi-objectif robuste , 2018 .

[33]  Julien Marzat,et al.  Worst-case global optimization of black-box functions through Kriging and relaxation , 2012, Journal of Global Optimization.

[34]  George Kuczera,et al.  There are no hydrological monsters, just models and observations with large uncertainties! , 2010 .

[35]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[36]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[37]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[38]  Jerome P. Jarrett,et al.  Horsetail matching: a flexible approach to optimization under uncertainty* , 2017 .

[39]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[40]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[41]  Oleksandr Romanko,et al.  Normalization and Other Topics in Multi­Objective Optimization , 2006 .

[42]  William I. Notz,et al.  DESIGNING COMPUTER EXPERIMENTS TO DETERMINE ROBUST CONTROL VARIABLES , 2004 .

[43]  Huyse Luc,et al.  Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies , 2001 .

[44]  Nicolas Gayton,et al.  On the consideration of uncertainty in design: optimization - reliability - robustness , 2016, Structural and Multidisciplinary Optimization.

[45]  R. Rockafellar,et al.  Deviation Measures in Risk Analysis and Optimization , 2002 .

[46]  Bernd Bischl,et al.  Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement , 2015, GECCO.