Nanoparticle formation and dusty plasma effects in DC sputtering discharge with graphite cathode
暂无分享,去创建一个
X. Bonnin | G. Lombardi | K. Hassouni | A. Michau | C. Arnas
[1] G. Lombardi,et al. Effects of the growth and the charge of carbon nanoparticles on direct current discharges , 2013 .
[2] X. Bonnin,et al. Field Reversal and Particle Growth in DC Discharge , 2012, Plasma Chemistry and Plasma Processing.
[3] X. Bonnin,et al. Modeling carbonaceous particle formation in an argon graphite cathode dc discharge , 2010 .
[4] X. Bonnin,et al. Modelling of dust grain formation in a low-temperature plasma reactor used for simulating parasitic discharges expected under tokamak divertor domes , 2010 .
[5] H. Thomas,et al. Agglomeration of mesoscopic particles in plasma , 2009 .
[6] S. Girshick,et al. Coagulation of nanoparticles in a plasma. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] A. Zeinert,et al. Optical properties of carbonaceous nanoparticles produced in sputtering discharges , 2008 .
[8] M. Shimada,et al. Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment , 2008 .
[9] C. Arnas,et al. Cathode sputtering and the resulting formation of carbon nanometer-size dust , 2007 .
[10] A. Bogaerts,et al. Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] G. Lombardi,et al. Formation of soot particles in Ar/H2/CH4 microwave discharges during nanocrystalline diamond deposition: A modeling approach , 2006 .
[12] Y. Mankelevich,et al. Coagulation rate of dust grains in a low-temperature plasma , 2003 .
[13] André Bouchoule,et al. Dusty plasmas : physics, chemistry, and technological impacts in plasma processing , 2000 .
[14] J. Boeuf,et al. Field reversal in the negative glow of a DC glow discharge , 1995 .
[15] Walch,et al. Charging of dust grains in plasma with energetic electrons. , 1995, Physical review letters.
[16] V. Schweigert,et al. MINDO/3 study of the interaction of small carbon clusters , 1995 .
[17] T. Matsoukas,et al. Particle charging in low‐pressure plasmas , 1995 .
[18] L. Tsendin. Electron kinetics in non-uniform glow discharge plasmas , 1995 .
[19] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[20] Kolobov,et al. Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[21] Boeuf. Characteristics of a dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[22] J. Allen,et al. Probe theory - the orbital motion approach , 1992 .
[23] Seung J. Choi,et al. Perturbation of the cathode fall in direct‐current glow discharges by particulate contamination , 1991 .
[24] D. Graves,et al. Particulates in aluminum sputtering discharges , 1990 .
[25] J. Lawler,et al. Electron temperature and density diagnostics in a helium glow discharge. , 1989, Physical review letters.
[26] S. Girshick,et al. Sectional modeling of nanoparticle size and charge distributions in dusty plasmas , 2012 .
[27] C. Dominique. Etude d'une décharge à pulvérisaion cathodique pour la production de poussières carbonées et étude de la croissance des nanoparticules produites , 2006 .