Nanoparticle formation and dusty plasma effects in DC sputtering discharge with graphite cathode

We developed a model for the nucleation, growth and transport of carbon dust particles in a DC discharge. The carbon source comes from the sputtering of a graphite cathode resulting in the production of primary clusters and then of nanoparticles. We consider the ionic cluster growth as well as the particle growth and charging and the influence of both on the discharge equilibrium. We found that the discharge becomes electronegative for long duration when particle density reaches 109 cm−3 and particle size 45 nm. The corresponding transition modifies the electric field profile in the vicinity of the field reversal region in the negative glow. We then analyze the space and time evolution of the different discharge characteristics and the mechanisms involved in the discharge. We showed that particle density is governed by nucleation, coagulation and transport, while particle size is mainly governed by the deposition of the small neural clusters emitted at the cathode on the particle surface.

[1]  G. Lombardi,et al.  Effects of the growth and the charge of carbon nanoparticles on direct current discharges , 2013 .

[2]  X. Bonnin,et al.  Field Reversal and Particle Growth in DC Discharge , 2012, Plasma Chemistry and Plasma Processing.

[3]  X. Bonnin,et al.  Modeling carbonaceous particle formation in an argon graphite cathode dc discharge , 2010 .

[4]  X. Bonnin,et al.  Modelling of dust grain formation in a low-temperature plasma reactor used for simulating parasitic discharges expected under tokamak divertor domes , 2010 .

[5]  H. Thomas,et al.  Agglomeration of mesoscopic particles in plasma , 2009 .

[6]  S. Girshick,et al.  Coagulation of nanoparticles in a plasma. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  A. Zeinert,et al.  Optical properties of carbonaceous nanoparticles produced in sputtering discharges , 2008 .

[8]  M. Shimada,et al.  Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment , 2008 .

[9]  C. Arnas,et al.  Cathode sputtering and the resulting formation of carbon nanometer-size dust , 2007 .

[10]  A. Bogaerts,et al.  Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Lombardi,et al.  Formation of soot particles in Ar/H2/CH4 microwave discharges during nanocrystalline diamond deposition: A modeling approach , 2006 .

[12]  Y. Mankelevich,et al.  Coagulation rate of dust grains in a low-temperature plasma , 2003 .

[13]  André Bouchoule,et al.  Dusty plasmas : physics, chemistry, and technological impacts in plasma processing , 2000 .

[14]  J. Boeuf,et al.  Field reversal in the negative glow of a DC glow discharge , 1995 .

[15]  Walch,et al.  Charging of dust grains in plasma with energetic electrons. , 1995, Physical review letters.

[16]  V. Schweigert,et al.  MINDO/3 study of the interaction of small carbon clusters , 1995 .

[17]  T. Matsoukas,et al.  Particle charging in low‐pressure plasmas , 1995 .

[18]  L. Tsendin Electron kinetics in non-uniform glow discharge plasmas , 1995 .

[19]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[20]  Kolobov,et al.  Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  Boeuf Characteristics of a dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  J. Allen,et al.  Probe theory - the orbital motion approach , 1992 .

[23]  Seung J. Choi,et al.  Perturbation of the cathode fall in direct‐current glow discharges by particulate contamination , 1991 .

[24]  D. Graves,et al.  Particulates in aluminum sputtering discharges , 1990 .

[25]  J. Lawler,et al.  Electron temperature and density diagnostics in a helium glow discharge. , 1989, Physical review letters.

[26]  S. Girshick,et al.  Sectional modeling of nanoparticle size and charge distributions in dusty plasmas , 2012 .

[27]  C. Dominique Etude d'une décharge à pulvérisaion cathodique pour la production de poussières carbonées et étude de la croissance des nanoparticules produites , 2006 .