Finite difference schemes for second order systems describing black holes

In the harmonic description of general relativity, the principal part of Einstein's equations reduces to 10 curved space wave equations for the components of the space-time metric. We present theorems regarding the stability of several evolution-boundary algorithms for such equations when treated in second order differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms are implemented as stable, convergent numerical codes and their performance is compared in a 2-dimensional excision problem.

[1]  J. Marsden,et al.  The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I , 1972 .

[2]  B. Schutz,et al.  Time-Symmetric ADI and Causal Reconnection , 1994, physics/0009029.

[3]  H. Kreiss,et al.  On the stability definition of difference approximations for the initial boundary value problem , 1993 .

[4]  Helmut Friedrich,et al.  Hyperbolic reductions for Einstein's equations , 1996 .

[5]  H. Kreiss,et al.  Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations , 2001, gr-qc/0106085.

[6]  M. Alcubierre,et al.  Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.

[7]  Boundary conditions in linearized harmonic gravity , 2001, gr-qc/0106026.

[8]  Heinz-Otto Kreiss,et al.  Difference Approximations for the Second Order Wave Equation , 2002, SIAM J. Numer. Anal..

[9]  Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[10]  Harald P. Pfeiffer,et al.  A Multidomain spectral method for solving elliptic equations , 2002, gr-qc/0202096.

[11]  C. Bona,et al.  General covariant evolution formalism for numerical relativity , 2003 .

[12]  Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.

[13]  Cornell University,et al.  3D simulations of linearized scalar fields in Kerr spacetime , 2004 .

[14]  Heinz-Otto Kreiss,et al.  Difference Approximations of the Neumann Problem for the Second Order Wave Equation , 2004, SIAM J. Numer. Anal..

[15]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[16]  Oscar Reula,et al.  Summation by parts and dissipation for domains with excised regions , 2003, gr-qc/0308007.

[17]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[18]  H. Kreiss,et al.  Modeling the black hole excision problem , 2004, gr-qc/0412101.

[19]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[20]  Gioel Calabrese Finite differencing second order systems describing black hole spacetimes , 2004, gr-qc/0410062.

[21]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[22]  HEINZ-OTTO KREISS,et al.  A Second Order Accurate Embedded Boundary Method for the Wave Equation with Dirichlet Data , 2005, SIAM J. Sci. Comput..

[23]  Some mathematical problems in numerical relativity , 2006 .

[24]  B. Szilágyi,et al.  Harmonic Initial-Boundary Evolution in General Relativity , 2006, gr-qc/0601039.