Exponential energy-preserving methods for charged-particle dynamics in a strong and constant magnetic field

In this paper, exponential energy-preserving methods are formulated and analysed for solving charged-particle dynamics in a strong and constant magnetic field. The resulting method can exactly preserve the energy of the dynamics. Moreover, it is shown that the magnetic moment of the considered system is nearly conserved over a long time along this exponential energy-preserving method, which is proved by using modulated Fourier expansions. Other properties of the method including symmetry and convergence are also studied. An illustrated numerical experiment is carried out to demonstrate the long-time behaviour of the method.

[1]  Jianyuan Xiao,et al.  Explicit symplectic algorithms based on generating functions for charged particle dynamics. , 2016, Physical review. E.

[2]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.

[3]  Hong Qin,et al.  Volume-preserving algorithms for charged particle dynamics , 2015, J. Comput. Phys..

[4]  Ernst Hairer,et al.  Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations , 2008, Numerische Mathematik.

[5]  Bin Wang,et al.  Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second-order differential equations , 2016, J. Comput. Appl. Math..

[6]  Bin Wang,et al.  Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems , 2016, Found. Comput. Math..

[7]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..

[8]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[9]  Hong Qin,et al.  Explicit K-symplectic algorithms for charged particle dynamics , 2017 .

[10]  Elena Celledoni,et al.  Energy-Preserving Integrators and the Structure of B-series , 2010, Found. Comput. Math..

[11]  Ting Li,et al.  Efficient energy-preserving methods for charged-particle dynamics , 2018, Appl. Math. Comput..

[12]  Xinyuan Wu,et al.  Exponential Integrators Preserving First Integrals or Lyapunov Functions for Conservative or Dissipative Systems , 2016, SIAM J. Sci. Comput..

[13]  John R. Cary,et al.  Hamiltonian theory of guiding-center motion , 2009 .

[14]  Molei Tao,et al.  Explicit high-order symplectic integrators for charged particles in general electromagnetic fields , 2016, J. Comput. Phys..

[15]  R. E. Marshak,et al.  The Adiabatic Motion of Charged Particles , 1964 .

[16]  Ernst Hairer,et al.  Symmetric multistep methods for charged-particle dynamics , 2017 .

[17]  Bin Wang,et al.  Explicit Symmetric Exponential Integrators for Charged-Particle Dynamics in a Strong and Constant Magnetic Field , 2020 .

[18]  Xinyuan Wu,et al.  Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations , 2018 .

[19]  Ernst Hairer,et al.  Energy behaviour of the Boris method for charged-particle dynamics , 2018, BIT Numerical Mathematics.

[20]  G JacobDilles,et al.  Conservation of Energy , 1874, The British and foreign medico-chirurgical review.

[21]  Ernst Hairer,et al.  Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field , 2020, Numerische Mathematik.

[22]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[23]  David Cohen,et al.  Long-term analysis of numerical integrators for oscillatory Hamiltonian systems under minimal non-resonance conditions , 2014, 1402.4755.

[24]  Stephen D. Webb,et al.  Symplectic integration of magnetic systems , 2013, J. Comput. Phys..

[25]  E. Hairer Energy-Preserving Variant of Collocation Methods 12 , 2010 .

[26]  E. Hairer,et al.  Energy Separation in Oscillatory Hamiltonian Systems without any Non-resonance Condition , 2012, 1205.2070.

[27]  J. M. Sanz-Serna,et al.  Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .

[28]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[29]  Xinyuan Wu,et al.  Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems , 2017, J. Comput. Phys..

[30]  Robert I McLachlan,et al.  Discrete gradient methods have an energy conservation law , 2013, 1302.4513.

[31]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[32]  Ernst Hairer,et al.  Long-term analysis of the Störmer–Verlet method for Hamiltonian systems with a solution-dependent high frequency , 2016, Numerische Mathematik.

[33]  Jian Liu,et al.  Why is Boris algorithm so good , 2013 .

[34]  C. Leland Ellison,et al.  Comment on "Symplectic integration of magnetic systems": A proof that the Boris algorithm is not variational , 2015, J. Comput. Phys..

[35]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[36]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[37]  Xinyuan Wu,et al.  A new high precision energy-preserving integrator for system of oscillatory second-order differential equations , 2012 .