Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules

Perovskite photovoltaic (PV) technology toward commercialization relies on high power conversion efficiency (PCE), long lifetime, and low-toxicity in addition to development of scalable fabrication...

[1]  A L Hammond Photovoltaics: the semiconductor revolution comes to solar. , 1977, Science.

[2]  Xingzhong Zhao,et al.  Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells , 2016 .

[3]  A. Abbas,et al.  Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells , 2019, Nature Energy.

[4]  A. Amano,et al.  Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer , 2019, Journal of Power Sources.

[5]  Y. Qi,et al.  Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. , 2017, ACS applied materials & interfaces.

[6]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[7]  Ruixia Yang,et al.  Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. , 2019, Nano letters.

[8]  Xiaopeng Han,et al.  Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[9]  Shinji Aramaki,et al.  Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics , 2017, Nature Nanotechnology.

[10]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[11]  P. Ribeyron Crystalline silicon solar cells: Better than ever , 2017, Nature Energy.

[12]  Paul A. Basore,et al.  A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules , 2017 .

[13]  Martin A. Green,et al.  Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells , 2018, Joule.

[14]  Xiaowei Li,et al.  Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives , 2017 .

[15]  Y. Qi,et al.  Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications , 2018, Small Methods.

[16]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[17]  Huawei Zhou,et al.  Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells , 2015 .

[18]  Yue Hu,et al.  Stable Large‐Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency , 2017 .

[19]  Y. Qi,et al.  High-throughput surface preparation for flexible slot die coated perovskite solar cells , 2018 .

[20]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[21]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[22]  Henry J. Snaith,et al.  Research Update: Strategies for improving the stability of perovskite solar cells , 2016 .

[23]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[24]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[25]  P. Meredith,et al.  Scaling of next generation solution processed organic and perovskite solar cells , 2018, Nature Communications.

[26]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[27]  K. Wong,et al.  An Ultrathin Ferroelectric Perovskite Oxide Layer for High‐Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells , 2018, Advanced Functional Materials.

[28]  Huawei Zhou,et al.  Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. , 2014, The journal of physical chemistry letters.

[29]  L. Qiu,et al.  Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules , 2018, Nature Communications.

[30]  Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability , 2018, Advanced materials.

[31]  H. Bolink,et al.  Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells , 2018 .

[32]  Young-Jung Heo,et al.  Progress in Scalable Coating and Roll‐to‐Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization , 2018 .

[33]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[34]  Cheng-Liang Liu,et al.  Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH3NH3PbI3 Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[35]  Mingkui Wang,et al.  Temperature Dependent Characteristics of Perovskite Solar Cells , 2017 .

[36]  Y. Liu,et al.  Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering , 2019, Journal of Materials Science & Technology.

[37]  N. Kosugi,et al.  Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process , 2018, Advanced materials.

[38]  Jing Li,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[39]  Yongfang Li,et al.  Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells , 2017 .

[40]  Henk J. Bolink,et al.  Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? , 2017 .

[41]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[42]  Robert Margolis,et al.  A new era for solar , 2017 .

[43]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[44]  Bin Fan,et al.  Large area perovskite solar cell module , 2017 .

[45]  Yongli Gao,et al.  Accelerated hole-extraction in carbon-electrode based planar perovskite solar cells by moisture-assisted post-annealing , 2019, Applied Physics Letters.

[46]  Q. Tang,et al.  Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy. , 2018, Angewandte Chemie.

[47]  Y. Hao,et al.  Intermolecular Exchange Boosts Efficiency of Air‐Stable, Carbon‐Based All‐Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9% , 2018, Advanced Energy Materials.

[48]  M. A. EI-Sayed,et al.  Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells , 2017, Nature Communications.

[49]  Y. Qi,et al.  Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology , 2017 .

[50]  Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells , 2018, Energy Technology.

[51]  Wen-Hau Zhang,et al.  An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells , 2015 .

[52]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[53]  Y. Qi,et al.  The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells , 2018, Journal of Physics D: Applied Physics.

[54]  T. Shi,et al.  Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering , 2019, Nano Energy.

[55]  Zhanhao Hu,et al.  Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation , 2019, Nature Energy.

[56]  Noel Clark,et al.  3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells , 2015 .

[57]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[58]  Shasha Zhang,et al.  Research progress on large-area perovskite thin films and solar modules , 2017 .

[59]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[60]  G. Hadziioannou,et al.  Materials for Transparent Electrodes: From Metal Oxides to Organic Alternatives , 2018 .

[61]  Jianbin Xu,et al.  High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. , 2015, Small.

[62]  Kelvin G. Lynn,et al.  CdTe solar cells with open-circuit voltage breaking the 1 V barrier , 2016 .

[63]  Y. Qi,et al.  Scalable solution coating of the absorber for perovskite solar cells , 2017, Journal of Energy Chemistry.

[64]  Zhike Liu,et al.  Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells , 2018 .

[65]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[66]  Y. Qi,et al.  Moisture and Oxygen Enhance Conductivity of LiTFSI‐Doped Spiro‐MeOTAD Hole Transport Layer in Perovskite Solar Cells , 2016, Advanced Materials Interfaces.

[67]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[68]  Hyunjung Shin,et al.  Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-Throughput Perovskite Solar Cells , 2019, ACS Energy Letters.

[69]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[70]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[71]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[72]  Rafael S Sánchez,et al.  Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells , 2016 .

[73]  Yu Yu,et al.  Influence of hole transport material/metal contact interface on perovskite solar cells , 2018, Nanotechnology.

[74]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[75]  B. Richards,et al.  Coated and Printed Perovskites for Photovoltaic Applications , 2019, Advanced materials.

[76]  Qiaoling Xu,et al.  Perovskite Solar Absorbers: Materials by Design , 2018 .

[77]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[78]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[79]  J. Ramanujam,et al.  Photovoltaic Properties of a-Si:H Films Grown by Plasma Enhanced Chemical Vapor Deposition: A Review , 2012 .

[80]  Wen-Hau Zhang,et al.  Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges , 2019, Advanced Functional Materials.

[81]  Ruixia Yang,et al.  Hysteresis‐Suppressed High‐Efficiency Flexible Perovskite Solar Cells Using Solid‐State Ionic‐Liquids for Effective Electron Transport , 2016, Advanced materials.

[82]  Mingkui Wang,et al.  Effect of temperature on the efficiency of organometallic perovskite solar cells , 2015 .

[83]  Shihe Yang,et al.  Carbon‐Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market? , 2017, Advanced materials.

[84]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[85]  M. Patrini,et al.  Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of MAPbI3 Thin Films by RF-Magnetron Sputtering , 2018, Scientific Reports.

[86]  Xudong Yang,et al.  Cost‐Performance Analysis of Perovskite Solar Modules , 2016, Advanced science.

[87]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[88]  Hyun Suk Jung,et al.  Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids , 2019, ACS Energy Letters.

[89]  L. Qiu,et al.  Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface , 2019, Advanced materials.

[90]  Yue Hu,et al.  Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. , 2018, The journal of physical chemistry letters.

[91]  Y. Qi,et al.  Recent Advances in Spiro‐MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells , 2018 .

[92]  D. Krasikov Selenium lowers bulk recombination , 2019, Nature Energy.

[93]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[94]  Zhigang Yin,et al.  Surface passivation of perovskite film for efficient solar cells , 2019, Nature Photonics.

[95]  Xudong Yang,et al.  Low‐Temperature Soft‐Cover Deposition of Uniform Large‐Scale Perovskite Films for High‐Performance Solar Cells , 2017, Advanced materials.

[96]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[97]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[98]  C. Brabec,et al.  Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrode‐Interface Architecture , 2018, Advanced Energy Materials.

[99]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[100]  C. McNeill,et al.  Amorphous hole-transporting layer in slot-die coated perovskite solar cells , 2017 .

[101]  Tongle Bu,et al.  A facile green solvent engineering for up-scaling perovskite solar cell modules , 2019, Solar Energy.

[102]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[103]  Su-Huai Wei,et al.  Anomalous Alloy Properties in Mixed Halide Perovskites. , 2014, The journal of physical chemistry letters.

[104]  M. Ikegami,et al.  Severe Morphological Deformation of Spiro-OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature , 2017 .

[105]  Jun Ji,et al.  Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3% , 2019, Nature Energy.

[106]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[107]  V. Bulović,et al.  Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[108]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[109]  Ming Cheng,et al.  Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. , 2014, ACS applied materials & interfaces.

[110]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[111]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[112]  Tsutomu Miyasaka A decade of perovskite photovoltaics , 2019, Nature Energy.

[113]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[114]  Michael Saliba,et al.  Cation influence on carrier dynamics in perovskite solar cells , 2019, Nano Energy.

[115]  Dong Yang,et al.  E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells , 2017 .

[116]  M. Green,et al.  Scaling limits to large area perovskite solar cell efficiency , 2018, Progress in Photovoltaics: Research and Applications.

[117]  Y. Qi,et al.  Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering , 2015, Scientific Reports.

[118]  Licheng Sun,et al.  Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability. , 2017, ChemSusChem.

[119]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[120]  H. Jung,et al.  Passivation in perovskite solar cells: A review , 2018 .

[121]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[122]  He Tian,et al.  Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammonium‐Based Additives , 2018, Advanced materials.

[123]  Yanlin Song,et al.  One‐Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting , 2018 .

[124]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[125]  Martin A. Green,et al.  Commercial progress and challenges for photovoltaics , 2016, Nature Energy.

[126]  Yue Hu,et al.  Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode , 2018 .

[127]  F. Roozeboom,et al.  Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide , 2014 .

[128]  I. Mora‐Seró,et al.  Interfaces in Perovskite Solar Cells , 2017 .

[129]  Michael F Toney,et al.  Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015, Advanced materials.

[130]  Y. Qi,et al.  Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review , 2018, Current Opinion in Electrochemistry.

[131]  M. Green,et al.  21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 cm2 , 2018, ACS Energy Letters.

[132]  Y. Galagan,et al.  Roll‐to‐Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells , 2018, Advanced Energy Materials.

[133]  Liyuan Han Solar cells boosted by an improved charge-carrying material , 2019, Nature.

[134]  Xiaofan Deng,et al.  Overcoming the challenges of large-area high-efficiency perovskite solar cells , 2017 .

[135]  Wei Huang,et al.  Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies , 2018, Advanced Functional Materials.

[136]  Kang Wang,et al.  CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[137]  Francesca De Rossi,et al.  All Printable Perovskite Solar Modules with 198 cm2 Active Area and Over 6% Efficiency , 2018, Advanced Materials Technologies.

[138]  Jinsong Hu,et al.  Negligible‐Pb‐Waste and Upscalable Perovskite Deposition Technology for High‐Operational‐Stability Perovskite Solar Modules , 2019, Advanced Energy Materials.

[139]  G. Boschloo,et al.  High Temperature‐Stable Perovskite Solar Cell Based on Low‐Cost Carbon Nanotube Hole Contact , 2017, Advanced materials.

[140]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[141]  Xiaolei Li,et al.  Series and Parallel Module Design for Large-Area Perovskite Solar Cells , 2019, ACS Applied Energy Materials.

[142]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[143]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[144]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[145]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[146]  Yi-bing Cheng,et al.  Self‐Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells , 2018, Advanced Functional Materials.

[147]  S. Priya,et al.  Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation , 2016 .

[148]  A. Pérez‐Rodríguez,et al.  Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up , 2018, Nature Energy.

[149]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[150]  L. Qiu,et al.  Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells. , 2017, The journal of physical chemistry. B.

[151]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[152]  Ashraf Uddin,et al.  Encapsulation of Organic and Perovskite Solar Cells: A Review , 2019, Coatings.

[153]  Edward H. Sargent,et al.  A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .

[154]  Tongle Bu,et al.  Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. , 2018, ACS applied materials & interfaces.

[155]  Aldo Di Carlo,et al.  High efficiency photovoltaic module based on mesoscopic organometal halide perovskite , 2016 .

[156]  Y. Hao,et al.  Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2 Solar Cells with High Photovoltages. , 2018, ACS applied materials & interfaces.

[157]  Jeffrey A. Christians,et al.  Stability at Scale: Challenges of Module Interconnects for Perovskite Photovoltaics , 2018, ACS Energy Letters.

[158]  M. Stuckelberger,et al.  Recent advances and remaining challenges in thin-film silicon photovoltaic technology , 2015 .

[159]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[160]  S. Mathur,et al.  Protic ionic liquid assisted solution processing of lead halide perovskites with water, alcohols and acetonitrile , 2018, Nano Energy.

[161]  M. Wasielewski,et al.  Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation , 2017 .

[162]  Xiaodong Ren,et al.  Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[163]  Heather Booth,et al.  Laser Processing in Industrial Solar Module Manufacturing , 2010 .

[164]  Matthew R. Leyden,et al.  Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability , 2018 .

[165]  P. Luo,et al.  Chemical Vapor Deposition of Perovskites for Photovoltaic Application , 2017 .

[166]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[167]  V. Dutta,et al.  Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells , 2014 .

[168]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[169]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[170]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[171]  T. Shi,et al.  17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer , 2019, Applied Surface Science.

[172]  A. Carlo,et al.  Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology , 2016 .

[173]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[174]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[175]  Udo Bach,et al.  Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. , 2012, Nano letters.

[176]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[177]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[178]  J. Toudert,et al.  Optical management for efficiency enhancement in hybrid organic-inorganic lead halide perovskite solar cells , 2018, Science and technology of advanced materials.

[179]  Y. Qi,et al.  Research progress on organic–inorganic halide perovskite materials and solar cells , 2018 .

[180]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[181]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[182]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[183]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[184]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[185]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[186]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[187]  Federico Bella,et al.  Perovskite Solar Cells: From the Laboratory to the Assembly Line. , 2018, Chemistry.

[188]  David Cahen,et al.  Photovoltaic solar cell technologies: analysing the state of the art , 2019, Nature Reviews Materials.

[189]  Y. Qi,et al.  Progress toward Stable Lead Halide Perovskite Solar Cells , 2018, Joule.

[190]  M. Bär,et al.  Perovskite solar cells: Danger from within , 2017, Nature Energy.

[191]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[192]  Emmanuel Kymakis,et al.  Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area , 2017 .

[193]  B. Richards,et al.  Inkjet-Printed Triple Cation Perovskite Solar Cells , 2018 .

[194]  Y. Galagan,et al.  Solvent Systems for Industrial-Scale Processing of Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Sells , 2018, ACS Applied Energy Materials.

[195]  Tze Chien Sum,et al.  Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices , 2014 .

[196]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.