Temperature dependence of the functional response.

The Arrhenius equation has emerged as the favoured model for describing the temperature dependence of consumption in predator-prey models. To examine the relevance of this equation, we undertook a meta-analysis of published relationships between functional response parameters and temperature. We show that, when plotted in lin-log space, temperature dependence of both attack rate and maximal ingestion rate exhibits a hump-shaped relationship and not a linear one as predicted by the Arrhenius equation. The relationship remains significantly downward concave even when data from temperatures above the peak of the hump are discarded. Temperature dependence is stronger for attack rate than for maximal ingestion rate, but the thermal optima are not different. We conclude that the use of the Arrhenius equation to describe consumption in predator-prey models requires the assumption that temperatures above thermal optima are unimportant for population and community dynamics, an assumption that is untenable given the available data.

[1]  P. Pankhurst,et al.  Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish , 2010 .

[2]  Björn C. Rall,et al.  Temperature, predator–prey interaction strength and population stability , 2009 .

[3]  T. Blackburn,et al.  Insect Rate‐Temperature Relationships: Environmental Variation and the Metabolic Theory of Ecology , 2009, The American Naturalist.

[4]  Geoffrey B. West,et al.  Response to Clarke and Fraser: effects of temperature on metabolic rate , 2006 .

[5]  David J. Wollkind,et al.  Temperature-dependent predator-prey mite ecosystem on apple tree foliage , 1978 .

[6]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[7]  A. Clarke,et al.  Temperature and the metabolic theory of ecology , 2006 .

[8]  Ali Asghar Talebi,et al.  Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphidiidae), on the cotton aphid , 2006, Journal of Pest Science.

[9]  Lloyd S. Peck,et al.  Extreme sensitivity of biological function to temperature in Antarctic marine species , 2004 .

[10]  Jonathan M. Jeschke,et al.  PREDATOR FUNCTIONAL RESPONSES: DISCRIMINATING BETWEEN HANDLING AND DIGESTING PREY , 2002 .

[11]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[12]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[13]  K. McCann,et al.  A Mechanistic Approach for Modeling Temperature‐Dependent Consumer‐Resource Dynamics , 2005, The American Naturalist.

[14]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[15]  G. Arnqvist,et al.  MetaWin: Statistical Software for Meta-Analysis with Resampling Tests. Version 1.Michael S. Rosenberg , Dean C. Adams , Jessica Gurevitch , 1998 .

[16]  van de Wolfshaar,et al.  Population persistence in the face of size-dependent predation and competition interactions , 2006 .

[17]  George W. Boehlert,et al.  Effects of temperature, ration, and fish size on growth of juvenile black rockfish, Sebastes melanops , 2004, Environmental Biology of Fishes.

[18]  Morgan S. Pratchett,et al.  Climate change and the future for coral reef fishes , 2008 .

[19]  M. Lajeunesse,et al.  Achieving synthesis with meta-analysis by combining and comparing all available studies. , 2010, Ecology.

[20]  S. D. Cooper,et al.  The importance of data-selection criteria: meta-analyses of stream predation experiments , 1999 .

[21]  G. Jong,et al.  The Energetics of Growth in Drosophila Melanogaster: Effect of Temperature and Food Conditions , 1997 .

[22]  X. Irigoien Gut clearance rate constant, temperature and initial gut contents: a review , 1998 .

[23]  W. Wurtsbaugh,et al.  An Empirical Model of Gastric Evacuation Rates for Fish and an Analysis of Digestion in Piscivorous Brown Trout , 1993 .

[24]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[25]  Theodore Garland,et al.  Why tropical forest lizards are vulnerable to climate warming , 2009, Proceedings of the Royal Society B: Biological Sciences.

[26]  Owen L. Petchey,et al.  Predicting the effects of temperature on food web connectance , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  J. M. Elliott,et al.  The effects of temperature and ration size on the growth and energetics of salmonids in captivity , 1982 .

[28]  J. S. Berry,et al.  MiteSim — a simulation model of the Banks grass mite (Acari: Tetranychidae) and the predatory mite, Neoseiulus fallacis (Acari: Phytoseiidae) on maize: model development and validation , 1991 .

[29]  D. Rogers,et al.  Random search and insect population models , 1972 .

[30]  Michael J. Angilletta, Jr.,et al.  Thermodynamic Effects on the Evolution of Performance Curves , 2010, The American Naturalist.

[31]  A. P. Allen,et al.  The mechanistic basis of the metabolic theory of ecology , 2007 .

[32]  R. Whittaker,et al.  Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness-productivity relationship. , 2010, Ecology.

[33]  M. Angilletta Thermal Adaptation: A Theoretical and Empirical Synthesis , 2009 .

[34]  John B. Collings,et al.  Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge , 1995 .

[35]  L. Hedges,et al.  Statistical Methods for Meta-Analysis , 1987 .

[36]  Jennifer L. Knies,et al.  Erroneous Arrhenius: Modified Arrhenius Model Best Explains the Temperature Dependence of Ectotherm Fitness , 2010, The American Naturalist.

[37]  W. Mitchell,et al.  Thermal games: frequency‐dependent models of thermal adaptation , 2009 .

[38]  P. Glynn,et al.  Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook , 2008 .

[39]  R. Huey,et al.  Why “Suboptimal” Is Optimal: Jensen’s Inequality and Ectotherm Thermal Preferences , 2008, The American Naturalist.

[40]  Lloyd S. Peck,et al.  Movements and burrowing activity in the Antarctic bivalve molluscs Laternula elliptica and Yoldia eightsi , 2004, Polar Biology.

[41]  Geoffrey B. West,et al.  Effects of Body Size and Temperature on Population Growth , 2004, The American Naturalist.

[42]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[43]  John E. Hunter,et al.  Fixed Effects vs. Random Effects Meta‐Analysis Models: Implications for Cumulative Research Knowledge , 2000 .

[44]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[45]  G. Somero,et al.  Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Jaap van der Meer,et al.  Metabolic theories in ecology , 2006 .

[47]  Jessica Gurevitch,et al.  MetaWin: Statistical Software for Meta-analysis with Resampling Tests , 1997 .

[48]  A. D. de Roos,et al.  Population feedback after successful invasion leads to ecological suicide in seasonal environments. , 2008, Ecology.

[49]  J. H. Petersen,et al.  Functional response and capture timing in an individual-based model : predation by Northern Squawfish (Ptychocheilus oregonensis) on juvenile salmonids in the Columbia River , 1992 .

[50]  P. Marquet,et al.  METABOLIC ECOLOGY: LINKING INDIVIDUALS TO ECOSYSTEMS , 2004 .