Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion

In this paper we consider a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion under zero Dirichlet boundary condition. By using topological degree theory, bifurcation theory, energy estimates and asymptotic behavior analysis, we prove the existence, uniqueness and multiplicity of positive steady states solutions under certain conditions on the parameters.

[1]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[2]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[3]  Yuan Lou,et al.  Some uniqueness and exact multiplicity results for a predator-prey model , 1997 .

[4]  E. N. Dancer On the indices of fixed points of mappings in cones and applications , 1983 .

[5]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations: Cantrell/Diffusion , 2004 .

[6]  Balram Dubey,et al.  A predator–prey interaction model with self and cross-diffusion , 2001 .

[7]  POSITIVE COEXISTENCE OF STEADY STATES FOR COMPETITIVE INTERACTING SYSTEM WITH SELF-DIFFUSION PRESSURES , 2001 .

[8]  Rui Peng,et al.  Effect of a protection zone in the diffusive Leslie predator-prey model , 2009 .

[9]  Yoshio Yamada Chapter 6 - Positive Solutions for Lotka–Volterra Systems with Cross-Diffusion , 2008 .

[10]  Junping Shi,et al.  Persistence and Bifurcation of Degenerate Solutions , 1999 .

[11]  M. Mimura Stationary pattern of some density-dependent diffusion system with competitive dynamics , 1981 .

[12]  J. López-Gómez Positive periodic solutions of Lotka-Volterra reaction-diffusion systems , 1992, Differential and Integral Equations.

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .

[15]  Jun Zhou,et al.  Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes ✩ , 2012 .

[16]  Kousuke Kuto,et al.  Bifurcation branch of stationary solutions for a Lotka–Volterra cross-diffusion system in a spatially heterogeneous environment , 2009 .

[17]  Weihua Ruan,et al.  Positive Steady-State Solutions of a Competing Reaction-Diffusion System with Large Cross-Diffusion Coefficients , 1996 .

[18]  Michael Pedersen,et al.  Coexistence of a general elliptic system in population dynamics , 2004 .

[19]  C. Pao Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion , 2005 .

[20]  Inkyung Ahn,et al.  Positive steady--states for two interacting species models with linear self-cross diffusions , 2003 .

[21]  Yoshio Yamada,et al.  Positive steady states for prey-predator models with cross-diffusion , 1996 .

[22]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[23]  Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics , 1993 .

[24]  Kazuhiro Oeda Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone , 2011 .

[25]  Yihong Du,et al.  Some Recent Results on Diffusive Predator-prey Models in Spatially Heterogeneous Environment ∗ † , 2005 .

[26]  Lige Li,et al.  Coexistence theorems of steady states for predator-prey interacting systems , 1988 .

[27]  Anthony W. Leung,et al.  Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences , 2009 .

[28]  Julián López-Gómez,et al.  Existence and uniqueness of coexistence states for a predator-prey model with diffusion , 1994 .

[29]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[30]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[31]  Yihong Du,et al.  A diffusive predator–prey model with a protection zone☆ , 2006 .

[32]  Julián López-Gómez,et al.  Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case , 1993 .

[33]  Junping Shi,et al.  The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator–prey model with Holling-type II functional responses , 2013 .

[34]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[35]  Yihong Du,et al.  Competing Species Equations with Diffusion, Large Interactions, and Jumping Nonlinearities , 1994 .

[36]  S. Meyn,et al.  THE EXISTENCE OF AN “I” , 2020, The Nature of Order, Book 4: The Luminous Ground.

[37]  Yuan Lou,et al.  S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator–Prey Model , 1998 .

[38]  Claudia Neuhauser,et al.  Mathematical Challenges in Spatial Ecology , 2001 .

[39]  Yuan Lou,et al.  DIFFUSION VS CROSS-DIFFUSION : AN ELLIPTIC APPROACH , 1999 .

[40]  Kimun Ryu,et al.  Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics , 2003 .

[41]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .

[42]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[43]  Yoshio Yamada,et al.  Positive solutions for Lotka–Volterra competition systems with large cross-diffusion , 2010 .

[44]  Xiang-Ping Yan,et al.  Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects , 2011 .

[45]  Uniqueness and nonuniqueness of coexistence states in the lotka‐volterra competition model , 1994 .

[46]  E. N. Dancer On positive solutions of some pairs of differential equations , 1984 .

[47]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[48]  Yoshio Yamada,et al.  Multiple coexistence states for a prey-predator system with cross-diffusion , 2004 .

[49]  Masayasu Mimura,et al.  Spatial segregation in competitive interaction-diffusion equations , 1980 .

[50]  Kousuke Kuto,et al.  Stability of steady-state solutions to a prey–predator system with cross-diffusion☆ , 2004 .

[51]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[52]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .