Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials

Hydrogels were the first biomaterials designed for clinical use. Their discovery and applications as soft contact lenses and implants are presented. This early hydrogel research served as a foundation for the expansion of biomedical polymers research into new directions: design of stimuli sensitive hydrogels that abruptly change their properties upon application of an external stimulus (pH, temperature, solvent, electrical field, biorecognition) and hydrogels as carriers for the delivery of drugs, peptides, and proteins. Finally, pathways to self-assembly of block and graft copolymers into hydrogels of precise 3D structures are introduced.

[1]  H. Brøndsted,et al.  Hydrogels for site-specific oral drug delivery: synthesis and characterization. , 1991, Biomaterials.

[2]  Toyoichi Tanaka,et al.  Salt effects on the phase transition of ionic gels , 1982 .

[3]  G. Schulz Über die Polymerisationskinetik in hochkonzentrierten Systemen , 1956 .

[4]  J. Hubbell,et al.  Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. , 2005, Biophysical journal.

[5]  Kinam Park,et al.  Characterization of protein release through glucose-sensitive hydrogel membranes. , 1997, Biomaterials.

[6]  Terry Kim,et al.  Hydrogels formed by multiple peptide ligation reactions to fasten corneal transplants. , 2006, Bioconjugate chemistry.

[7]  W. J. King,et al.  Dynamic Materials Based on a Protein Conformational Change , 2007 .

[8]  V. Šubr,et al.  Release of macromolecules and daunomycin from hydrophilic gels containing enzymatically degradable bonds. , 1990, Journal of biomaterials science. Polymer edition.

[9]  K. Ulbrich,et al.  Preparation and properties of poly(N-ethylmethacrylamide) networks , 1977 .

[10]  Kristi S. Anseth,et al.  PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine , 2009, Pharmaceutical Research.

[11]  J. Kopeček,et al.  Poly[N-(2-hydroxypropyl)methacrylamide]—II: Hydrodynamic properties of dilute solutions☆ , 1974 .

[12]  K. Ulbrich,et al.  HPMA-hydrogels result in prolonged delivery of anticancer drugs and are a promising tool for the treatment of sensitive and multidrug resistant leukaemia. , 2002, European journal of cancer.

[13]  S. W. Kim,et al.  Progestin permeation through polymer membranes I: diffusion studies on plasma-soaked membranes. , 1978, Journal of pharmaceutical sciences.

[14]  J D Andrade,et al.  The foreign body reaction: a chronic inflammatory response. , 1974, Journal of biomedical materials research.

[15]  Y. Bae,et al.  Electrically credible polymer gel for controlled release of drugs , 1991, Nature.

[16]  Allan S Hoffman,et al.  Hydrogels for biomedical applications. , 2002, Advanced drug delivery reviews.

[17]  Buddy D Ratner,et al.  Biomaterials: where we have been and where we are going. , 2004, Annual review of biomedical engineering.

[18]  K. Dušek,et al.  Transition in swollen polymer networks induced by intramolecular condensation , 1968 .

[19]  Lisa Joss,et al.  Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides , 2002 .

[20]  Kristi S Anseth,et al.  Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. , 2008, Biomacromolecules.

[21]  Kinam Park,et al.  Characterization of Glucose Dependent Gel-Sol Phase Transition of the Polymeric Glucose-Concanavalin A Hydrogel System , 1996, Pharmaceutical Research.

[22]  Y. Bae,et al.  In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. , 2000, Journal of biomedical materials research.

[23]  G. Prestwich,et al.  Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[24]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[25]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.

[26]  K. Ulbrich,et al.  Radical polymerization of n-substituted methacrylamides , 1976 .

[27]  O. Wichterle,et al.  Polymerization of ethylene glycol monomethacrylate in the presence of solvents , 1967 .

[28]  K. Ulbrich,et al.  Cross‐linked copolymers of N,N‐diethylacrylamide with improved mechanical properties , 2007 .

[29]  V. Breedveld,et al.  Reversible hydrogels from self-assembling genetically engineered protein block copolymers. , 2005, Biomacromolecules.

[30]  K. Dušek,et al.  Structure and elasticity of non-crystalline polymer networks , 1969 .

[31]  M. Mrksich,et al.  Dynamic hydrogels: translating a protein conformational change into macroscopic motion. , 2007, Angewandte Chemie.

[32]  S. Okabe,et al.  Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel , 2005 .

[33]  K. Anseth,et al.  Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. , 2008, Nature materials.

[34]  Eric Elliott,et al.  Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels , 2005 .

[35]  J. Elisseeff,et al.  Characterizing ECM production by cells encapsulated in hydrogels. , 2009, Methods in molecular biology.

[36]  J. Kopeček,et al.  Hydrogels as smart biomaterials , 2007 .

[37]  R. Yoshida,et al.  Biomimetic gel exhibiting self-beating motion in ATP solution. , 2005, Biomacromolecules.

[38]  Ralph Müller,et al.  Synthetic extracellular matrices for in situ tissue engineering , 2004, Biotechnology and bioengineering.

[39]  J. Kopeček,et al.  Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly , 2008, Pharmaceutical Research.

[40]  J. Kopeček,et al.  Poly[N-(2-hydroxypropyl)methacrylamide]-iii. Crosslinking copolymerization , 1974 .

[41]  K. Ulbrich,et al.  Polymers containing enzymatically degradable bonds. VI. Hydrophilic gels cleavable by chymotrypsin. , 1982, Biomaterials.

[42]  J. Andrade Hydrogels for medical and related applications , 1976 .

[43]  Jindrich Kopecek,et al.  Peptide-directed self-assembly of hydrogels. , 2009, Acta biomaterialia.

[44]  R. Stewart,et al.  Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. , 2001, Biomacromolecules.

[45]  Yoshihito Osada,et al.  Stimuli-responsive polymer gels and their application to chemomechanical systems , 1993 .

[46]  T. Kurokawa,et al.  Effect of polymer entanglement on the toughening of double network hydrogels. , 2005, The journal of physical chemistry. B.

[47]  J. Kopeček,et al.  Novel pH-sensitive hydrogels with adjustable swelling kinetics. , 1998, Biomaterials.

[48]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[49]  Babak Ziaie,et al.  Integration of hydrogels with hard and soft microstructures. , 2007, Journal of nanoscience and nanotechnology.

[50]  H. Klok,et al.  Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. , 2004, Macromolecular bioscience.

[51]  Masayuki Tokita,et al.  Phase Transitions of Gels , 1992 .

[52]  N. Seeman,et al.  Emulating biology: Building nanostructures from the bottom up , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Sergiy Minko,et al.  Stimuli-responsive properties of peptide-based copolymers studied via directional growth of self-assembled patterns on solid substrate. , 2009, Biomacromolecules.

[54]  Mingming Wu,et al.  A hydrogel-based microfluidic device for the studies of directed cell migration. , 2007, Lab on a chip.

[55]  M. Štol,et al.  Employment of hydron polymer antibiotic vehicle in otolaryngology. , 1969, Journal of biomedical materials research.

[56]  Dong Wang,et al.  Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. , 2006, Biomaterials.

[57]  Chunyu Xu,et al.  Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. , 2006, Biomacromolecules.

[58]  J. E. Puig,et al.  Equilibrium swelling and mechanical properties of hydrogels of acrylamide and itaconic acid or its esters , 2000 .

[59]  Teruo Okano,et al.  Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water , 1990 .

[60]  J. Kopeček,et al.  Self-assembled hydrogels from poly[N-(2-hydroxypropyl)methacrylamide] grafted with beta-sheet peptides. , 2009, Biomacromolecules.

[61]  Taketoshi Fujimoto,et al.  Infrared studies of stereoregular polymerization of methyl methacrylate and methacrylonitrile by organometallic compounds , 1968 .

[62]  M. Kubin,et al.  Structure and properties of hydrophilic polymers and their gels. V. Diffusion in gels , 1965 .

[63]  Z Voldrich,et al.  Long-term experience with poly(glycol monomethacrylate) gel in plastic operations of the nose. , 1975, Journal of biomedical materials research.

[64]  J. Kopeček,et al.  Mechanism of three-dimensional polymerization of glycol methacrylates. III. Contribution to the polymerization kinetics of the system diglycol monomethacrylate-glycol dimethacrylates-water , 1971 .

[65]  J. Kopeček,et al.  Mechanismus der Dreidimensionalen Polymerisation von Glykolmethacrylaten , 1967 .

[66]  Jindrich Kopecek,et al.  Biodegradable and pH-sensitive hydrogels: Synthesis by crosslinking of N,N-dimethylacrylamide copolymer precursors , 1994 .

[67]  J. Kopeček,et al.  Self-assembling diblock copolymers of poly[N-(2-hydroxypropyl)methacrylamide] and a beta-sheet peptide. , 2009, Macromolecular bioscience.

[68]  D. Woolfson,et al.  A periodic table of coiled-coil protein structures. , 2009, Journal of molecular biology.

[69]  D. Mooney,et al.  Hydrogels for combination delivery of antineoplastic agents. , 2001, Biomaterials.

[70]  L Sprincl,et al.  Biological tolerance of ionogenic hydrophilic gels. , 1973, Journal of biomedical materials research.

[71]  Huan Li,et al.  Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. , 2005, Angewandte Chemie.

[72]  J. Kopeček,et al.  Specific resistances of hydrophilic membranes containing ionogenic groups , 1975 .

[73]  D. Beebe,et al.  Flow control with hydrogels. , 2004, Advanced drug delivery reviews.

[74]  H. Tanzawa,et al.  Controlled release of drugs from hydrogel matrices , 1979 .

[75]  Z. Kresa,et al.  Hydron gel implants in vocal cords. , 1973, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[76]  R. Harrison,et al.  Hydroxyethyl methacrylate capillary strip. Animal trials with a new glaucoma drainage device. , 1970, Archives of ophthalmology.

[77]  H. Brøndsted,et al.  pH-Sensitive Hydrogels: Characteristics and Potential in Drug Delivery , 1992 .

[78]  J. Andrade,et al.  Preparation and properties of stereoregular poly(hydroxyethyl methacrylate) polymers and hydrogels , 1978 .

[79]  J. Kopeček,et al.  Mechanical Responses of 2-Hydroxyethyl Methacrylate-Methacrylonitrile and 2-Hydroxyethyl Methacrylate-Acrylonitrile Copolymer Networks , 1976 .

[80]  G. Butler Cyclopolymerization and Cyclocopolymerization , 1992 .

[81]  A. Hoffman,et al.  Synthetic Hydrogels for Biomedical Applications , 1976 .

[82]  J. Kopeček,et al.  Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization , 1973 .

[83]  H. Brøndsted,et al.  Dextran hydrogels for colon-specific drug delivery. II: Synthesis and characterization , 1995 .

[84]  L Sprincl,et al.  Biological tolerance of poly(N-substituted methacrylamides). , 1971, Journal of biomedical materials research.

[85]  B. Sedláček Structure and properties of hydrophilic polymers and their gels. VII. Turbidity changes of polymeric gels poly(ethylene glycol methacrylate)-glycol-water , 1967 .

[86]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[87]  Toru Takehisa,et al.  Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay , 2002 .

[88]  Kristi S Anseth,et al.  The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. , 2008, Biomaterials.

[89]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[90]  J. Kopeček,et al.  Dynamic light scattering study of self-assembly of HPMA hybrid graft copolymers. , 2008, Biomacromolecules.

[91]  M. Madou,et al.  Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics , 2005, Nature Materials.

[92]  K. Ulbrich,et al.  HPMA-hydrogels containing cytostatic drugs. Kinetics of the drug release and in vivo efficacy. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[93]  T. Okano,et al.  Thermo-sensitive polymers as on-off switches for drug release , 1987 .

[94]  Toru Takehisa,et al.  Compositional effects on mechanical properties of Nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay , 2003 .

[95]  Jindřich Kopeček,et al.  Polymer chemistry: Swell gels , 2002, Nature.

[96]  B. K. Davis Diffusion of polymer gel implants. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Masahiro Irie,et al.  Photoinduced phase transition of gels , 1990 .

[98]  Jindřich Kopeček,et al.  Mechanism of the three‐dimensional polymerization of glycol methacrylates. II. The system glycol monomethacrylate–glycol dimethacrylates–solvents , 1971 .

[99]  W. Kuhn,et al.  Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks , 1950, Nature.

[100]  Toyoichi Tanaka,et al.  Phase transition in polymer gels induced by visible light , 1990, Nature.

[101]  N. Peppas,et al.  Hydrogels in Pharmaceutical Formulations , 1999 .

[102]  Dong Wang,et al.  Novel aromatic azo-containing pH-sensitive hydrogels: Synthesis and characterization , 2002 .

[103]  J. V. van Hest,et al.  Beta-sheet side chain polymers synthesized by atom-transfer radical polymerization. , 2005, Biomacromolecules.

[104]  B. K. Davis Control of diabetes with polyacrylamide implants containing insulin , 1972, Experientia.

[105]  J. Kopeček,et al.  Effect of the structure of poly(glycol monomethacrylate) gel on the calcification of implants , 2005, Calcified Tissue Research.

[106]  G. Daculsi,et al.  Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. , 1997, Biomaterials.

[107]  L Sprincl,et al.  Effect of porosity of heterogeneous poly(glycol monomethacrylate) gels on the healing-in of test implants. , 1971, Journal of biomedical materials research.

[108]  J. Gong,et al.  The molecular origin of enhanced toughness in double-network hydrogels: A neutron scattering study☆ , 2007 .

[109]  Jöns Hilborn,et al.  Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry” , 2006 .

[110]  Kevin E Healy,et al.  Hydrogels as artificial matrices for human embryonic stem cell self-renewal. , 2006, Journal of biomedical materials research. Part A.

[111]  J. Hedrick,et al.  Synthesis of well-defined hydrogel networks using click chemistry. , 2006, Chemical communications.

[112]  L. Lyon,et al.  Soft nanotechnology with soft nanoparticles. , 2005, Angewandte Chemie.

[113]  Somponnat Sampattavanich,et al.  Effects of Three‐Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells , 2006, Stem cells.

[114]  Babak Ziaie,et al.  A hydrogel-based implantable micromachined transponder for wireless glucose measurement. , 2006, Diabetes technology & therapeutics.

[115]  Jindřich Kopeček,et al.  The photoelastic behaviour of dry and swollen networks of poly (N,N-diethylacrylamide) and of its copolymer with N-tert.butylacrylamide , 1981 .

[116]  E. Furst,et al.  Growth factor mediated assembly of cell receptor-responsive hydrogels. , 2007, Journal of the American Chemical Society.

[117]  Russell J. Stewart,et al.  Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains , 1999, Nature.

[118]  J. Hubbell,et al.  Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). , 2005, Biomaterials.

[119]  Wim E. Hennink,et al.  Novel Self-assembled Hydrogels by Stereocomplex Formation in Aqueous Solution of Enantiomeric Lactic Acid Oligomers Grafted To Dextran , 2000 .

[120]  Jindřich Kopeček,et al.  Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment , 2003 .

[121]  Smart hydrogels containing adenylate kinase: translating substrate recognition into macroscopic motion. , 2008, Journal of the American Chemical Society.

[122]  Jindřich Kopeček,et al.  Permeability of membranes containing ionogenic groups , 1971 .

[123]  Derek N Woolfson,et al.  Engineering the morphology of a self-assembling protein fibre , 2003, Nature materials.

[124]  Y. H. Kim,et al.  Property modulation of poly(N-isopropylacrylamide) hydrogels by incorporation of modified silica , 2008 .

[125]  Anne Condon,et al.  Designed DNA molecules: principles and applications of molecular nanotechnology , 2006, Nature Reviews Genetics.

[126]  Kinam Park,et al.  Biodegradable Hydrogels for Drug Delivery , 1993 .

[127]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[128]  F. Bettelheim,et al.  Light‐scattering studies of crosslinking unsaturated polyesters with methyl acrylate , 1962 .

[129]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[130]  J. Mestecky,et al.  Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[131]  M. Ilavský,et al.  Structure and properties of hydrophilic polymers and their gels. II. Creep properties of polyethyleneglycolmethacrylate and polydiethyleneglycolmethacrylate in the main transition region , 1965 .

[132]  Toru Takehisa,et al.  Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties , 2002 .

[133]  I. Pastan,et al.  Designed heterodimerizing leucine zippers with a ranger of pIs and stabilities up to 10−15 M , 2001, Protein science : a publication of the Protein Society.

[134]  Shyni Varghese,et al.  Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. , 2008, Matrix biology : journal of the International Society for Matrix Biology.

[135]  Tommasina Coviello,et al.  Polysaccharide hydrogels for modified release formulations. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[136]  R. Praus,et al.  Hydrophilic contact lenses as a new therapeutic approach for the topical use of chloramphenicol and tetracycline. , 1972, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[137]  J. Vogt,et al.  Soft contact lens polymers: an evolution. , 2001, Biomaterials.

[138]  T. Okano,et al.  Comb-type grafted hydrogels with rapid deswelling response to temperature changes , 1995, Nature.

[139]  K. Dušek,et al.  Structure and properties of hydrophilic polymers and their gels. XI. Microsyneresis in swollen poly(ethylene glycol methacrylate) gels induced by changes of temperature , 1969 .

[140]  Hamidreza Ghandehari,et al.  Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction , 1996 .

[141]  C. McCormick,et al.  Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. , 2005, Biomacromolecules.

[142]  Kristi S. Anseth,et al.  Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties , 2009, Science.

[143]  Patrick F. Kiser,et al.  A synthetic mimic of the secretory granule for drug delivery , 1998, Nature.

[144]  P. Righetti,et al.  Electrophoresis gel media: the state of the art. , 1997, Journal of chromatography. B, Biomedical sciences and applications.

[145]  K. Ito,et al.  SANS studies on spatial inhomogeneities of slide-ring gels , 2004 .

[146]  K. Dušek,et al.  Deformational, swelling, and potentiometric behavior of ionized gels of 2‐hydroxyethyl methacrylate–methacrylic acid copolymers , 1979 .

[147]  Gerhard A Blab,et al.  The Tumbleweed: Towards a synthetic protein motor , 2009, HFSP journal.

[148]  Allan S. Huffman,et al.  Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions , 1986 .

[149]  Toyoichi Tanaka Collapse of Gels and the Critical Endpoint , 1978 .

[150]  James M. Anderson,et al.  Biological Responses to Materials , 2001 .

[151]  C. Migliaresi,et al.  Mechanical properties of hydrophilic copolymers of 2-hydroxyethyl methacrylate with ethyl acrylate, n-butyl acrylate, and dodecyl methacrylate. , 1983, Journal of biomedical materials research.

[152]  D. Wirtz,et al.  Reversible hydrogels from self-assembling artificial proteins. , 1998, Science.

[153]  K. Matyjaszewski,et al.  Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process , 1995 .