Tuning Extended Kalman Filter for Induction Motor drives using simulated annealing

The use of an Extended Kalman Filter as an observer for a sensorless Induction Motor is longstanding. However, little attempt has been made to optimise the filter performance. This paper proposes a Simulated Annealing algorithm to solve the tuning process of the EKF covariance matrices. The optimisation technique of EKF using Simulated Annealing is illustrated through simulation implementation by constant V/f control of an IM. The paper concentrates on finding the setting of the EKF parameters and the performance is compared to use of trial and error.

[1]  Lane A. Hemaspaandra,et al.  Using simulated annealing to design good codes , 1987, IEEE Trans. Inf. Theory.

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Stephane Brisset,et al.  Comparing stochastic optimization methods used in electrical engineering , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[4]  A. H. Mantawy,et al.  A simulated annealing-based optimal controller for a three phase induction motor , 2002, Proceedings. International Conference on Power System Technology.

[5]  P. Acarnley,et al.  Tuning PI speed controllers for electric drives using simulated annealing , 2002, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on.

[6]  A. Liegeois,et al.  Simulated Annealing Combined with a Constructive Algorithm for Optimising Assembly Workcell Layout , 2001 .

[7]  Adel Razek,et al.  Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique , 1999 .

[8]  Jaleel Valappil,et al.  Systematic estimation of state noise statistics for extended Kalman filters , 2000 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  David J. Atkinson,et al.  Full-order estimator for induction motor states and parameters , 1998 .

[11]  S. L. Ho,et al.  Speed estimation of an induction motor drive using an optimized extended Kalman filter , 2002, IEEE Trans. Ind. Electron..

[12]  David J. Atkinson,et al.  Observers for induction motor state and parameter estimation , 1991 .

[13]  Silverio Bolognani,et al.  Extended Kalman filter tuning in sensorless PMSM drives , 2003 .

[14]  A. H. Mantawy,et al.  A simulated annealing algorithm for unit commitment , 1998 .

[15]  E. Moreno,et al.  Application of genetic algorithms and simulated annealing technique in optimising the aperture distributions of antenna array patterns , 1996 .

[16]  Ned Mohan,et al.  Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor , 1991 .

[17]  J. K. Fidler,et al.  Application of the genetic algorithm and simulated annealing to LC filter tuning , 2001 .

[18]  Robert Sutton,et al.  Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system , 2004 .