Monitoring compositional data using multivariate exponentially weighted moving average scheme

Recently, the monitoring of compositional data by means of control charts has been investigated in the statistical process control literature. In this article, we develop a Phase II multivariate exponentially weighted moving average control chart, for the continuous surveillance of compositional data based on a transformation into coordinate representation. We use a Markov chain approximation to determine the performance of the proposed multivariate control chart. The optimal multivariate exponentially weighted moving average smoothing constants, control limits, and out‐of‐control average run lengths have been computed for different combinations of the in‐control average run lengths and the number of variables. Several tables are presented and enumerated to show the statistical performance of the proposed control chart. An example illustrates the use of this chart on an industrial problem from a plant in Europe.

[1]  Giovanni Celano,et al.  Monitoring the ratio of population means of a bivariate normal distribution using CUSUM type control charts , 2016, Statistical Papers.

[2]  Kim Phuc Tran,et al.  Run Rules median control charts for monitoring process mean in manufacturing , 2017, Qual. Reliab. Eng. Int..

[3]  Shoja'eddin Chenouri,et al.  Phase I monitoring with nonparametric mixed‐effect models , 2017, Qual. Reliab. Eng. Int..

[4]  Antonio Fernando Branco Costa,et al.  Monitoring bivariate and trivariate mean vectors with a Shewhart chart , 2017, Qual. Reliab. Eng. Int..

[5]  Antonio Costa,et al.  Economic statistical design of ARMA control chart through a Modified Fitness-based Self-Adaptive Differential Evolution , 2017, Comput. Ind. Eng..

[6]  Philippe Castagliola,et al.  Run-sum control charts for monitoring the coefficient of variation , 2017, Eur. J. Oper. Res..

[7]  Kim Phuc Tran,et al.  The efficiency of CUSUM schemes for monitoring the coefficient of variation , 2016 .

[8]  Kim Phuc Tran,et al.  The Efficiency of the 4-Out-of-5 Runs Rules Scheme for Monitoring the Ratio of Population Means of a Bivariate Normal Distribution , 2016 .

[9]  Giovanni Celano,et al.  Monitoring the Ratio of Two Normal Variables Using EWMA Type Control Charts , 2016, Qual. Reliab. Eng. Int..

[10]  Marina Vives-Mestres,et al.  Signal interpretation in Hotelling’s T2 control chart for compositional data , 2016 .

[11]  Giovanni Celano,et al.  Monitoring the ratio of two normal variables using Run Rules type control charts , 2016 .

[12]  Giovanni Celano,et al.  A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables , 2016, Qual. Reliab. Eng. Int..

[13]  Giovanni Celano,et al.  Design of a Phase II Control Chart for Monitoring the Ratio of two Normal Variables , 2016, Qual. Reliab. Eng. Int..

[14]  Josep Antoni Martín Fernández,et al.  Signal Interpretation in Hotelling's T2 Control Chart for Compositional Data , 2016 .

[15]  Longcheen Huwang,et al.  Multivariate control charts based on the James-Stein estimator , 2015, Eur. J. Oper. Res..

[16]  Nan Chen,et al.  Multivariate Exponentially Weighted Moving-Average Chart for Monitoring Poisson Observations , 2015 .

[17]  V. Pawlowsky-Glahn,et al.  Modeling and Analysis of Compositional Data , 2015 .

[18]  Jyh-Jen Horng Shiau,et al.  A Distribution‐Free Multivariate Control Chart for Phase I Applications , 2015, Qual. Reliab. Eng. Int..

[19]  Zefeng Li,et al.  Process monitoring research with various estimator-based MEWMA control charts , 2015 .

[20]  Giovanni Celano,et al.  Statistical Performance of a Control Chart for Individual Observations Monitoring the Ratio of Two Normal Variables , 2014, Qual. Reliab. Eng. Int..

[21]  Bin Chen,et al.  A new exponentially weighted moving average control chart for monitoring the coefficient of variation , 2014, Comput. Ind. Eng..

[22]  Marina Vives-Mestres,et al.  Individual T2 Control Chart for Compositional Data , 2014 .

[23]  Marina Vives-Mestres,et al.  Out-of-Control Signals in Three-Part Compositional T2 Control Chart , 2014, Qual. Reliab. Eng. Int..

[24]  Zhonghua Li,et al.  Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis , 2014, Commun. Stat. Simul. Comput..

[25]  Alireza Faraz,et al.  Monitoring delivery chains using multivariate control charts , 2013, Eur. J. Oper. Res..

[26]  Giovanni Celano,et al.  Monitoring the Coefficient of Variation Using EWMA Charts , 2011 .

[27]  Mahmoud A. Mahmoud,et al.  The Performance of the MEWMA Control Chart when Parameters are Estimated , 2010, Commun. Stat. Simul. Comput..

[28]  Douglas C. Montgomery,et al.  Statistical quality control : a modern introduction , 2009 .

[29]  Marion R. Reynolds,et al.  Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix , 2008 .

[30]  Michael B. C. Khoo,et al.  Optimal Statistical Design of a Multivariate EWMA Chart Based on ARL and MRL , 2006 .

[31]  V. Pawlowsky-Glahn,et al.  Groups of Parts and Their Balances in Compositional Data Analysis , 2005 .

[32]  J. Nickerson,et al.  A multivariate exponentially weighted moving average control chart for photovoltaic processes , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[33]  G. Mateu-Figueras,et al.  Isometric Logratio Transformations for Compositional Data Analysis , 2003 .

[34]  Elvira N. Loredo,et al.  A Program for ARL Calculation for Multivariate EWMA Charts , 2001 .

[35]  Russell A. Boyles,et al.  Using the chi-square statistic to monitor compositional process data , 1997 .

[36]  George C. Runger,et al.  Designing a Multivariate EWMA Control Chart , 1997 .

[37]  George C. Runger,et al.  A Markov Chain Model for the Multivariate Exponentially Weighted Moving Averages Control Chart , 1996 .

[38]  William H. Woodall,et al.  A Comparison of Multivariate Control Charts for Individual Observations , 1996 .

[39]  A. Erhan Mergen,et al.  IMPROVING THE PERFORMANCE OF THE T2 CONTROL CHART , 1993 .

[40]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[41]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[42]  Stephen V. Crowder,et al.  Design of Exponentially Weighted Moving Average Schemes , 1989 .

[43]  S. Shen,et al.  The statistical analysis of compositional data , 1983 .