Predicting Properties of the Rat Somatosensory System by Sparse Coding

Many studies address how neurons in the barrel cortex of rats react to stimula- tion of the rat's whiskers. In this study we analyse how the statistical properties of whisker deflections from typical surfaces relate to the properties of neurons in the somatosensory system. We built an artificial whisker system to record realistic natural tactile data. An artificial whisker is moved about a set of surfaces of everyday objects. We analyse how simulated neurons can represent such stimuli in an optimally sparse fashion. These representations predict a number of interesting properties of neurons in the somatosensory system that have yet to be measured.

[1]  Hiroshi Yokoi,et al.  An active artificial whisker array for texture discrimination , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Toshio Tsuji,et al.  Active antenna for contact sensing , 1998, IEEE Trans. Robotics Autom..

[3]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[4]  M. A. Neimark,et al.  Vibrissa Resonance as a Transduction Mechanism for Tactile Encoding , 2003, The Journal of Neuroscience.

[5]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[6]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[7]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[8]  D. Kleinfeld,et al.  Frisking the Whiskers Patterned Sensory Input in the Rat Vibrissa System , 2004, Neuron.

[9]  S. Nelson,et al.  Dynamics of neuronal processing in rat somatosensory cortex , 1999, Trends in Neurosciences.

[10]  R.A. Russell,et al.  Using tactile whiskers to measure surface contours , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[11]  Hiroshi Yokoi,et al.  An artificial whisker sensor for robotics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[13]  Konrad P. Körding,et al.  Optimal Coding for Naturally Occurring Whisker Deflections , 2003, ICANN.

[14]  E. Guic-Robles,et al.  Rats can learn a roughness discrimination using only their vibrissal system , 1989, Behavioural Brain Research.

[15]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[16]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Li Yang,et al.  Sparse visual models for biologically inspired sensorimotor control , 2003 .

[19]  K.P. Kording,et al.  Learning of sparse auditory receptive fields , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[20]  Christoph Kayser,et al.  On the Choice of a Sparse Prior , 2003, Reviews in the neurosciences.

[21]  M. Hartmann,et al.  Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal , 2003, The Journal of Neuroscience.

[22]  S. B. Vincent The function of the vibrissae in the behavior of the white rat , 1912 .

[23]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[24]  M. Diamond,et al.  Encoding of Whisker Vibration by Rat Barrel Cortex Neurons: Implications for Texture Discrimination , 2003, The Journal of Neuroscience.

[25]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Alexander Zelinsky,et al.  Whisker based mobile robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[27]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[28]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.