Field Data Based Data Fusion Methodologies to Estimate Dynamic Origin-Destination Demand Matrices from Multiple Sensing and Tracking Technologies

Brief Description of Research Project Recent advances in real-time traffic sensing, including GPS data from probe vehicles, automatic vehicle identification using RFID and Bluetooth sensors, and automatic number plate recognition, provide richer data when combined with traditional O-D estimation techniques. However, the data obtained from these different sensors do not convey similar information on the traffic conditions of the network. This project seeks to develop and test a systematic methodology to integrate the different data sources, also labeled data fusion, to address the O-D estimation problem, leveraging the availability of different types of data with disparate characteristics.

[1]  Anders Peterson,et al.  A heuristic for the bilevel origin-destination-matrix estimation problem , 2008 .

[2]  Nanne J. Van Der Zijpp,et al.  Dynamic OD-Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data , 1997 .

[3]  Agachai Sumalee,et al.  Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts , 2014 .

[4]  Anthony Chen,et al.  STRATEGIES FOR SELECTING ADDITIONAL TRAFFIC COUNTS FOR IMPROVING O-D TRIP TABLE ESTIMATION , 2007 .

[5]  Shing Chung Josh Wong,et al.  Quality Measures of Origin-Destination Trip Table Estimated from Traffic Counts: Review and New Generalized Demand Scale Measure , 2012 .

[6]  Hossein Tavana,et al.  Internally-consistent estimation of dynamic network origin-destination flows from intelligent transportation systems data using bi-level optimization , 2001 .

[7]  William H. K. Lam,et al.  EVALUATION OF COUNT LOCATION SELECTION METHODS FOR ESTIMATION OF O-D MATRICES , 1998 .

[8]  Srinivas Peeta,et al.  Impacts of Property Accessibility and Neighborhood Built Environment on Single-Unit and Multiunit Residential Property Values , 2016 .

[9]  Time-Dependent Origin-Destination Estimation Without Assignment Matrices , 2008 .

[10]  Taehyung Park,et al.  Estimation of dynamic origin-destination trip tables for a general network , 2001 .

[11]  Gang-Len Chang,et al.  Recursive estimation of time-varying origin-destination flows from traffic counts in freeway corridors , 1994 .

[12]  Anthony Chen,et al.  Identification of Network Sensor Locations for Estimation of Traffic Flow , 2014 .

[13]  Enrique F. Castillo,et al.  The Observability Problem in Traffic Models: Algebraic and Topological Methods , 2008, IEEE Transactions on Intelligent Transportation Systems.

[14]  Hani S. Mahmassani,et al.  Dynamic origin-destination demand estimation using automatic vehicle identification data , 2006, IEEE Transactions on Intelligent Transportation Systems.

[15]  C. S. Fisk,et al.  ON COMBINING MAXIMUM ENTROPY TRIP MATRIX ESTIMATION WITH USER OPTIMAL ASSIGNMENT , 1988 .

[16]  Hani S. Mahmassani,et al.  Sensor Coverage and Location for Real-Time Traffic Prediction in Large-Scale Networks , 2007 .

[17]  Xuesong Zhou,et al.  Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach , 2013 .

[18]  Yuntao Guo,et al.  Rail–Truck Multimodal Freight Collaboration: Truck Freight Carrier Perspectives in the United States , 2015 .

[19]  Adel W. Sadek,et al.  Computational-Based Approach to Estimating Travel Demand in Large-Scale Microscopic Traffic Simulation Models , 2013 .

[20]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[21]  Hani S. Mahmassani,et al.  Dynamic Origin-Destination Demand Estimation Using Turning Movement Counts , 2008 .

[22]  Srinivas Peeta,et al.  Identification of vehicle sensor locations for link-based network traffic applications , 2009 .

[23]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[24]  Martin L. Hazelton,et al.  Statistical Inference for Transit System Origin-Destination Matrices , 2010, Technometrics.

[25]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[26]  Mike Smith,et al.  A model for the dynamic system optimum traffic assignment problem , 1995 .

[27]  A Bayesian Approach to Traffic Estimation in Stochastic User Equilibrium Networks , 2013 .

[28]  Chung-Cheng Lu,et al.  Dynamic origin-destination demand flow estimation under congested traffic conditions , 2013 .

[29]  Yuntao Guo,et al.  Internal Curing for Concrete Bridge Decks: Integrating a Social Cost Analysis in Evaluating the Long-Term Benefit , 2016 .

[30]  Srinivas Peeta,et al.  Integrated Determination of Network Origin–Destination Trip Matrix and Heterogeneous Sensor Selection and Location Strategy , 2016, IEEE Transactions on Intelligent Transportation Systems.

[31]  Moshe E. Ben-Akiva,et al.  Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows , 2002, Transp. Sci..

[32]  George F. List,et al.  An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications , 2010, Transp. Sci..

[33]  Yuntao Guo,et al.  The impact of walkable environment on single-family residential property values , 2017 .

[34]  Francesco Corman,et al.  Assessing partial observability in network sensor location problems , 2014 .

[35]  Tsuna Sasaki,et al.  Estimation of time-varying origin-destination flows from traffic counts: A neural network approach , 1998 .

[36]  Enrique F. Castillo,et al.  Traffic Estimation and Optimal Counting Location Without Path Enumeration Using Bayesian Networks , 2008, Comput. Aided Civ. Infrastructure Eng..

[37]  Marta C. González,et al.  Origin-destination trips by purpose and time of day inferred from mobile phone data , 2015 .

[38]  Hani S. Mahmassani,et al.  A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework , 2007 .

[39]  Domenico Sassanelli,et al.  A Fixed Point Approach to Origin-Destination Matrices Estimation Using Uncertain Data and Fuzzy Programming on Congested Networks , 2013 .

[40]  Hani S. Mahmassani,et al.  Number and Location of Sensors for Real-Time Network Traffic Estimation and Prediction: Sensitivity Analysis , 2006 .

[41]  Enrique Castillo,et al.  Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks , 2010 .

[42]  H. Michael Zhang,et al.  Computing Individual Path Marginal Cost in Networks with Queue Spillbacks , 2011 .

[43]  W. H. K. Lam,et al.  Accuracy of O-D estimates from traffic counts , 1990 .

[44]  Agachai Sumalee,et al.  Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply , 2008 .

[45]  Laurence R. Rilett,et al.  Real‐Time OD Estimation Using Automatic Vehicle Identification and Traffic Count Data , 2002 .

[46]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[47]  H. Spiess A MAXIMUM LIKELIHOOD MODEL FOR ESTIMATING ORIGIN-DESTINATION MATRICES , 1987 .

[48]  Pu Wang,et al.  Development of origin–destination matrices using mobile phone call data , 2014 .

[49]  Srinivas Peeta,et al.  Rail-truck multimodal freight collaboration: a statistical analysis of freight-shipper perspectives , 2016 .

[50]  Hsun-Jung Cho,et al.  Time Dependent Origin-destination Estimation from Traffic Count without Prior Information , 2009 .

[51]  Lucio Bianco,et al.  Locating sensors to observe network arc flows: Exact and heuristic approaches , 2014, Comput. Oper. Res..

[52]  Michael A. West,et al.  Bayesian Inference on Network Traffic Using Link Count Data , 1998 .

[53]  Kara M. Kockelman,et al.  A Maximum Entropy-least Squares Estimator for Elastic Origin-Destination Trip Matrix Estimation , 2011 .

[54]  Santos Sánchez-Cambronero,et al.  Predicting traffic flow using Bayesian networks , 2008 .

[55]  Martin L. Hazelton,et al.  Estimation of origin–destination matrices from link counts and sporadic routing data , 2012 .

[56]  Fulvio Simonelli,et al.  A network sensor location procedure accounting for o–d matrix estimate variability , 2012 .

[57]  Michael Bierlaire,et al.  The total demand scale: a new measure of quality for static and dynamic origin–destination trip tables , 2002 .

[58]  Francisco G. Benitez,et al.  An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix , 2005 .

[59]  Ramachandran Balakrishna,et al.  Off-line calibration of Dynamic Traffic Assignment models , 2006 .

[60]  Shengxue He A graphical approach to identify sensor locations for link flow inference , 2013 .

[61]  Michel Bierlaire,et al.  An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables , 2004, Oper. Res..

[62]  Anthony Chen,et al.  Multiobjective Model for Locating Automatic Vehicle Identification Readers , 2004 .

[63]  Hong Zheng,et al.  Optimal Heterogeneous Sensor Deployment Strategy for Dynamic Origin–Destination Demand Estimation , 2016 .

[64]  Chao Yang,et al.  Models and algorithms for the screen line-based traffic-counting location problems , 2006, Comput. Oper. Res..

[65]  Baher Abdulhai,et al.  Noniterative Approach to Dynamic Traffic Origin-Destination Estimation with Parallel Evolutionary Algorithms , 2006 .

[66]  Zhenbo Lu,et al.  A Kalman filter approach to dynamic OD flow estimation for urban road networks using multi‐sensor data , 2015 .

[67]  Ernesto Cipriani,et al.  A Gradient Approximation Approach for Adjusting Temporal Origin–Destination Matrices , 2011 .

[68]  Yasuo Asakura,et al.  Origin-destination matrices estimation model using automatic vehicle identification data and its application to the Han-Shin expressway network , 2000 .

[69]  Yu Nie,et al.  A Variational Inequality Approach For Inferring Dynamic Origin-Destination Travel Demands , 2006 .

[70]  E. Castillo,et al.  A Bayesian method for estimating traffic flows based on plate scanning , 2013 .

[71]  Haris N. Koutsopoulos,et al.  Incorporating Automated Vehicle Identification Data into Origin-Destination Estimation , 2004 .

[72]  Senlai Zhu,et al.  Network Sensor Location Models Accounting for Variability of Traffic Flow Estimation , 2015 .

[73]  E. Jenelius,et al.  c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation , 2015 .

[74]  H. M. Zhang,et al.  A Relaxation Approach for Estimating Origin–Destination Trip Tables , 2010 .

[75]  Hai Yang,et al.  Optimal traffic counting locations for origin–destination matrix estimation , 1998 .

[76]  Manwo Ng Synergistic sensor location for link flow inference without path enumeration: A node-based approach , 2012 .

[77]  Francesco Viti,et al.  Sensor Locations for Reliable Travel Time Prediction and Dynamic Management of Traffic Networks , 2008 .

[78]  Davy Janssens,et al.  A Bayesian Approach For Modeling Origin-Destination Matrices , 2011 .

[79]  Hai Yang,et al.  An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts , 1991 .

[80]  Lin Cheng,et al.  A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows , 2014 .

[81]  Kalidas Ashok,et al.  DYNAMIC ORIGIN-DESTINATION MATRIX ESTIMATION AND PREDICTION FOR REAL- TIME TRAFFIC MANAGEMENT SYSTEMS , 1993 .

[82]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[83]  Anthony Chen,et al.  Scenario-based multi-objective AVI reader location models under different travel demand patterns , 2010 .

[84]  Martin L. Hazelton,et al.  Inference for origin–destination matrices: estimation, prediction and reconstruction , 2001 .