Model-based overlapping clustering
暂无分享,去创建一个
Joydeep Ghosh | Arindam Banerjee | Raymond J. Mooney | Sugato Basu | Chase Krumpelman | R. Mooney | A. Banerjee | Sugato Basu | Joydeep Ghosh | Chase Krumpelman
[1] Paul J. Schweitzer,et al. Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..
[2] Sheldon M. Ross,et al. Introduction to probability models , 1975 .
[3] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[4] P. McCullagh,et al. Generalized Linear Models , 1992 .
[5] Sankar K. Pal,et al. Fuzzy models for pattern recognition , 1992 .
[6] Ken Lang,et al. NewsWeeder: Learning to Filter Netnews , 1995, ICML.
[7] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[8] Eric Saund,et al. Applying the Multiple Cause Mixture Model to Text Categorization , 1996, ICML.
[9] Ramakrishnan Srikant,et al. Mining generalized association rules , 1995, Future Gener. Comput. Syst..
[10] Y. Censor,et al. Parallel Optimization:theory , 1997 .
[11] Avi Pfeffer,et al. Probabilistic Frame-Based Systems , 1998, AAAI/IAAI.
[12] Yiming Yang,et al. A re-examination of text categorization methods , 1999, SIGIR '99.
[13] Lise Getoor,et al. Learning Probabilistic Relational Models , 1999, IJCAI.
[14] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.
[15] George M. Church,et al. Biclustering of Expression Data , 2000, ISMB.
[16] Hans Kellerer,et al. The Multiple Subset Sum Problem , 2000, SIAM J. Optim..
[17] Andrzej Stachurski,et al. Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..
[18] Ash A. Alizadeh,et al. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.
[19] L. Lazzeroni. Plaid models for gene expression data , 2000 .
[20] Yair Censor,et al. Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimization , 2001, Ann. Oper. Res..
[21] Sanjoy Dasgupta,et al. A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.
[22] C. Papadimitriou,et al. On the value of private information , 2001 .
[23] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[24] Geoffrey J. Gordon. Generalized^2 Linear^2 Models , 2002, NIPS 2002.
[25] Geoffrey J. Gordon. Generalized2 Linear2 Models , 2002, NIPS.
[26] Daphne Koller,et al. Decomposing Gene Expression into Cellular Processes , 2002, Pacific Symposium on Biocomputing.
[27] Inderjit S. Dhillon,et al. Information theoretic clustering of sparse cooccurrence data , 2003, Third IEEE International Conference on Data Mining.
[28] Raymond J. Mooney,et al. A probabilistic framework for semi-supervised clustering , 2004, KDD.
[29] Manfred K. Warmuth,et al. Relative Loss Bounds for Multidimensional Regression Problems , 1997, Machine Learning.
[30] Inderjit S. Dhillon,et al. Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.
[31] Vincent Conitzer,et al. Computing Shapley Values, Manipulating Value Division Schemes, and Checking Core Membership in Multi-Issue Domains , 2004, AAAI.
[32] Yoram Singer,et al. Logistic Regression, AdaBoost and Bregman Distances , 2000, Machine Learning.
[33] Arlindo L. Oliveira,et al. Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[34] Daphne Koller,et al. Probabilistic discovery of overlapping cellular processes and their regulation , 2004, J. Comput. Biol..
[35] Avanidhar Subrahmanyam,et al. The Value of Private Information , 2005 .
[36] David Pisinger,et al. Where are the hard knapsack problems? , 2005, Comput. Oper. Res..
[37] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[38] Inderjit S. Dhillon,et al. A generalized maximum entropy approach to bregman co-clustering and matrix approximation , 2004, J. Mach. Learn. Res..