Désambiguïsation lexicale de textes : efficacité qualitative et temporelle d’un algorithme à colonies de fourmis [Lexical disambiguation of texts: qualitative and temporal efficiency of an ant colony algorithm]

In this article, we present the notions of local and global algorithms, for the word sense disambiguation of texts. A local algorithm allows to calculate the semantic similarity between two lexical objects. Global algorithms propagate local measures at the upper level. We use this notion to compare an ant colony algorithm to other methods from the state of the art: a genetic algorithm and simulated annealing. Through their evaluation on a reference corpus, we show that the run-time efficiency of the ant colony algorithm makes the automated estimation of parameters possible and in turn the improvement of the quality results as well. Last, we study several late classifier fusion strategies over the results to improve the performance. MOTS-CLÉS : désambiguïsation lexicale fondée sur des similarités, algorithmes locaux/globaux, algorithmes à colonies de fourmis, algorithmes stochastiques d’optimisation.

[1]  Graeme Hirst,et al.  Lexical chains as representations of context for the detection and correction of malapropisms , 1995 .

[2]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[3]  Didier Schwab,et al.  Lexical Functions for Ants Based Semantic Analysis , 2007, IC-AI.

[4]  Joë Metzger,et al.  Pour la science , 1974 .

[5]  Jeff Heflin,et al.  The Semantic Web – ISWC 2012 , 2012, Lecture Notes in Computer Science.

[6]  Mathieu Lafourcade Lexique et analyse sémantique de textes - structures, acquisitions, calculs, et jeux de mots. (Lexicon and semantic analysis of texts - structures, acquisition, computation and games with words) , 2011 .

[7]  Iryna Gurevych,et al.  Using Distributional Similarity for Lexical Expansion in Knowledge-based Word Sense Disambiguation , 2012, COLING.

[8]  Nicolas Monmarché,et al.  Artificial ants : from collective intelligence to real-life optimization and beyond , 2010 .

[9]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[10]  Giacomo Ferrari,et al.  State of the art in Computational Linguistics , 2004 .

[11]  M. Gibson,et al.  Beyond ANOVA: Basics of Applied Statistics. , 1986 .

[12]  Alexander Mehler Modeling, Learning, and Processing of Text Technological Data Structures , 2012, Studies in Computational Intelligence.

[13]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[14]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[15]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[16]  Louise Guthrie,et al.  Lexical Disambiguation using Simulated Annealing , 1992, COLING.

[17]  Kathleen F. McCoy,et al.  Efficient text summarization using lexical chains , 2000, IUI '00.

[18]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[19]  Alexis Drogoul When Ants Play Chess (Or Can Strategies Emerge from Tactical Behaviours?) , 1993, MAAMAW.

[20]  Martin Chodorow,et al.  Combining local context and wordnet similarity for word sense identification , 1998 .

[21]  Mirella Lapata,et al.  An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Didier Schwab,et al.  Ant Colony Algorithm for the Unsupervised Word Sense Disambiguation of Texts: Comparison and Evaluation , 2012, COLING.

[23]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[24]  David McLean,et al.  An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources , 2003, IEEE Trans. Knowl. Data Eng..

[25]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[26]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[27]  Rada Mihalcea,et al.  PageRank on Semantic Networks, with Application to Word Sense Disambiguation , 2004, COLING.

[28]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[29]  Mirella Lapata,et al.  Good Neighbors Make Good Senses: Exploiting Distributional Similarity for Unsupervised WSD , 2008, COLING.

[30]  Rada Mihalcea,et al.  Unsupervised Graph-basedWord Sense Disambiguation Using Measures of Word Semantic Similarity , 2007, International Conference on Semantic Computing (ICSC 2007).

[31]  H. Levene Robust tests for equality of variances , 1961 .

[32]  Mathieu Lafourcade,et al.  Fourmis Artificielles et Traitement de la Langue Naturelle , 2009 .

[33]  Philippe Langlais,et al.  Evaluating Variants of the Lesk Approach for Disambiguating Words , 2004, LREC.

[34]  David Yarowsky,et al.  One Sense Per Discourse , 1992, HLT.

[35]  Roberto Navigli,et al.  SemEval-2007 Task 07: Coarse-Grained English All-Words Task , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[36]  Simone Paolo Ponzetto,et al.  Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems , 2010, ACL.

[37]  J. Deneubourg,et al.  The blind leading the blind: Modeling chemically mediated army ant raid patterns , 1989, Journal of Insect Behavior.

[38]  Didier Schwab,et al.  Parameter estimation under uncertainty with Simulated Annealing applied to an ant colony based probabilistic WSD algorithm , 2012, Coling 2012.

[39]  Tony Veale,et al.  An Intrinsic Information Content Metric for Semantic Similarity in WordNet , 2004, ECAI.

[40]  Ted Pedersen,et al.  An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet , 2002, CICLing.

[41]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[42]  Jérôme Euzenat,et al.  A Feature and Information Theoretic Framework for Semantic Similarity and Relatedness , 2010, SEMWEB.

[43]  Didier Schwab,et al.  Désambigu\"ısation lexicale par propagation de mesures sémantiques locales par algorithmes à colonies de fourmis , 2011 .

[44]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .