Pricing of First Touch Digitals Under Normal Inverse Gaussian Processes

We calculate prices of first touch digitals under normal inverse Gaussian (NIG) processes, and compare them to prices in the Brownian model and double exponential jump-diffusion model. Numerical results are produced to show that for typical parameters values, the relative error of the Brownian motion approximation to NIG price can be 2–3 dozen percent if the spot price is at the distance 0.05–0.2 from the barrier (normalized to one). A similar effect is observed for approximations by the double exponential jump-diffusion model, if the jump component of the approximation is significant. We show that two jump-diffusion processes can give approximately the same results for European options but essentially different results for first touch digitals and barrier options. A fast approximate pricing formula under NIG is derived.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  E. T. Copson,et al.  Asymptotic Expansions: The saddle-point method , 1965 .

[3]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  D. Madan,et al.  1option Pricing with V. G. Martingale Components , 1991 .

[5]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[6]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[7]  Xiao Lan Zhang Numerical Methods in Finance: Valuation of American Option in a Jump-diffusion Models , 1997 .

[8]  M. Potters,et al.  Theory of Financial Risk , 1997 .

[9]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[10]  Karsten Prause,et al.  Modelling Financial Data Using Generalized Hyperbolic Distributions , 1997 .

[11]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[12]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[13]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[14]  Jr. Jonathan E. Ingersoll Digital Contracts: Simple Tools for Pricing Complex Derivatives , 2000 .

[15]  S. Levendorskii,et al.  Option Pricing and Hedging Under Regular Lévy Processes of Exponential Type , 2001 .

[16]  S. Levendorskii,et al.  Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .

[17]  S. Levendorskii,et al.  Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  S. Levendorskii,et al.  Pricing of perpetual Bermudan options , 2002 .

[19]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[20]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[21]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[22]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[23]  S. Levendorskii,et al.  PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .

[24]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.

[25]  Sergei Levendorskii,et al.  The Relative Efficiency of Numerical Methods for Pricing American Options Under LéVy Processes , 2005 .