Pricing of First Touch Digitals Under Normal Inverse Gaussian Processes
暂无分享,去创建一个
[1] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[2] E. T. Copson,et al. Asymptotic Expansions: The saddle-point method , 1965 .
[3] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[4] D. Madan,et al. 1option Pricing with V. G. Martingale Components , 1991 .
[5] F. Delbaen,et al. A general version of the fundamental theorem of asset pricing , 1994 .
[6] Tina Hviid Rydberg. The normal inverse gaussian lévy process: simulation and approximation , 1997 .
[7] Xiao Lan Zhang. Numerical Methods in Finance: Valuation of American Option in a Jump-diffusion Models , 1997 .
[8] M. Potters,et al. Theory of Financial Risk , 1997 .
[9] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[10] Karsten Prause,et al. Modelling Financial Data Using Generalized Hyperbolic Distributions , 1997 .
[11] P. Carr,et al. The Variance Gamma Process and Option Pricing , 1998 .
[12] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[13] Svetlana Boyarchenko,et al. OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .
[14] Jr. Jonathan E. Ingersoll. Digital Contracts: Simple Tools for Pricing Complex Derivatives , 2000 .
[15] S. Levendorskii,et al. Option Pricing and Hedging Under Regular Lévy Processes of Exponential Type , 2001 .
[16] S. Levendorskii,et al. Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .
[17] S. Levendorskii,et al. Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[18] S. Levendorskii,et al. Pricing of perpetual Bermudan options , 2002 .
[19] S. Levendorskii,et al. Non-Gaussian Merton-Black-Scholes theory , 2002 .
[20] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[21] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[22] Christoph Schwab,et al. Fast deterministic pricing of options on Lévy driven assets , 2002 .
[23] S. Levendorskii,et al. PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .
[24] Rama Cont,et al. Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.
[25] Sergei Levendorskii,et al. The Relative Efficiency of Numerical Methods for Pricing American Options Under LéVy Processes , 2005 .