P-complete geometric problems

In this paper we show that it is impossible to solve a number of “natural” 2-dimensional geometric problems in polylog time with a polynomial number of processors (unless P = NC). Thus, we disprove a popular belief that there are no natural P-complete geometric problems in the plane. The problems we address include instances of polygon triangulation, planar partitioning, and geometric layering. Our results are based on non-trivial reductions from the monotone circuit value and planar circuit value problems.

[1]  Larry Rudolph,et al.  A Complexity Theory of Efficient Parallel Algorithms , 1990, Theor. Comput. Sci..

[2]  Richard Cole,et al.  Cascading divide-and-conquer: A technique for designing parallel algorithms , 1989, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[3]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[6]  Chee-Keng Yap,et al.  Algebraic cell decomposition in NC , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[7]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[8]  Mikhail J. Atallah,et al.  Efficient parallel techniques for computational geometry , 1987 .

[9]  Michael T. Goodrich,et al.  Generalized sweep methods for parallel computational geometry , 1990, SPAA '90.

[10]  Jorge Urrutia,et al.  Galleries, Light Matchings and Visibility Graphs , 1989, WADS.

[11]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[12]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Michael T. Goodrich,et al.  Triangulating a Polygon in Parallel , 1989, J. Algorithms.

[14]  Ian Parberry,et al.  Parallel complexity theory , 1987, Research notes in theoretical computer science.

[15]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[16]  Henryk Wozniakowski,et al.  Complexity of linear programming , 1982, Oper. Res. Lett..

[17]  Larry S. Davis,et al.  Merging in parallel computational geometry , 1989 .

[18]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[19]  Chee-Keng Yap What Can be Parallelized in Computational Geometry? , 1987, Parallel Algorithms and Architectures.

[20]  Larry Rudolph,et al.  A Complexity Theory of Efficient Parallel Algorithms (Extended Abstract) , 1988, ICALP.

[21]  Richard M. Karp,et al.  A Survey of Parallel Algorithms for Shared-Memory Machines , 1988 .

[22]  Anita Liu Chow Parallel algorithms for geometric problems , 1980 .

[23]  Michael T. Goodrich,et al.  Intersecting line segments in parallel with an output-sensitive number of processors , 1989, SPAA '89.

[24]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[25]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[26]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..

[27]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[28]  John Hershberger Upper Envelope Onion Peeling , 1992, Comput. Geom..

[29]  Richard J. Lipton,et al.  Linear Programming is Log-Space Hard for P , 1979, Inf. Process. Lett..

[30]  Satoru Miyano,et al.  A List of P-Complete Problems , 1989 .

[31]  Roberto Tamassia,et al.  Fully dynamic techniques for point location and transitive closure in planar structures , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[32]  Michael T. Goodrich,et al.  Finding the Convex Hull of a Sorted Point Set in Parallel , 1987, Inf. Process. Lett..

[33]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.