Inhibitor of Differentiation 4 (ID4) represses mammary myoepithelial differentiation via inhibition of HEB

[1]  J. van Rheenen,et al.  C/EBPɑ is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition , 2020, Nature Communications.

[2]  Grace X. Y. Zheng,et al.  Integrated Single-Cell Transcriptomics and Chromatin Accessibility Analysis Reveals Regulators of Mammary Epithelial Cell Identity. , 2020, Cell reports.

[3]  S. Weiss,et al.  Divergent Matrix-Remodeling Strategies Distinguish Developmental from Neoplastic Mammary Epithelial Cell Invasion Programs. , 2018, Developmental cell.

[4]  C. Watson,et al.  Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells , 2018, Development.

[5]  T. Voet,et al.  Early lineage segregation of multipotent embryonic mammary gland progenitors , 2018, Nature Cell Biology.

[6]  O. Renaud,et al.  Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland , 2018, Nature Cell Biology.

[7]  S. Manoir,et al.  Slug/Pcad pathway controls epithelial cell dynamics in mammary gland and breast carcinoma , 2018, Oncogene.

[8]  J. Marioni,et al.  Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing , 2017, Nature Communications.

[9]  M. Smidt,et al.  Tcf12 Is Involved in Early Cell-Fate Determination and Subset Specification of Midbrain Dopamine Neurons , 2017, Front. Mol. Neurosci..

[10]  Michele K. Anderson,et al.  Targeted Disruption of TCF12 Reveals HEB as Essential in Human Mesodermal Specification and Hematopoiesis , 2017, Stem cell reports.

[11]  M. Lewis,et al.  The Terminal End Bud: the Little Engine that Could , 2017, Journal of Mammary Gland Biology and Neoplasia.

[12]  Mauro J. Muraro,et al.  Identity and dynamics of mammary stem cells during branching morphogenesis , 2017, Nature.

[13]  C. Watson,et al.  Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny , 2016, Nature Communications.

[14]  A. Swarbrick,et al.  ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. , 2016, Endocrine-related cancer.

[15]  A. Van Keymeulen,et al.  Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells , 2016, Genes & development.

[16]  N. Baker,et al.  E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. , 2015, Developmental cell.

[17]  S. Lakhani,et al.  ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype , 2015, Nature Communications.

[18]  J. Baker,et al.  HEB associates with PRC2 and SMAD2/3 to regulate developmental fates , 2015, Nature Communications.

[19]  Li Yang,et al.  Identification of multipotent mammary stem cells by protein C receptor expression , 2014, Nature.

[20]  J. Visvader,et al.  Dual roles for Id4 in the regulation of estrogen signaling in the mammary gland and ovary , 2014, Development.

[21]  G. Godeau,et al.  Picrosirius Red Staining , 2014, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[22]  S. Menon,et al.  Mammary stem cells have myoepithelial cell properties , 2014, Nature Cell Biology.

[23]  Bogi Andersen,et al.  Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. , 2014, Developmental cell.

[24]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[25]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[26]  Jane E. Visvader,et al.  In situ identification of bipotent stem cells in the mammary gland , 2014, Nature.

[27]  Peri Nagappan,et al.  Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN , 2013, Molecular Cancer.

[28]  R. Schiff,et al.  PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. , 2013, Cancer cell.

[29]  Carlos Caldas,et al.  Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. , 2013, Cell reports.

[30]  Xian-Ming Chen,et al.  Col1A1 Production and Apoptotic Resistance in TGF-β1-Induced Epithelial-to-Mesenchymal Transition-Like Phenotype of 603B Cells , 2012, PLoS ONE.

[31]  R. Nusse,et al.  Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. , 2012, Cell stem cell.

[32]  Yibin Kang,et al.  Elf5 Regulates Mammary Gland Stem/Progenitor Cell Fate by Influencing Notch Signaling , 2012, Stem cells.

[33]  L. Hinck,et al.  Mammary gland development , 2012, Wiley interdisciplinary reviews. Developmental biology.

[34]  H. Park,et al.  FoxM1 regulates mammary luminal cell fate. , 2012, Cell reports.

[35]  Michele K. Anderson,et al.  HEB in the Spotlight: Transcriptional Regulation of T-Cell Specification, Commitment, and Developmental Plasticity , 2012, Clinical & developmental immunology.

[36]  Wenjun Guo,et al.  Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State , 2012, Cell.

[37]  Chris Albanese,et al.  ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. , 2012, The American journal of pathology.

[38]  F. Sablitzky,et al.  ID4 regulates mammary gland development by suppressing p38MAPK activity , 2011, Development.

[39]  A. Rocha,et al.  Distinct stem cells contribute to mammary gland development and maintenance , 2011, Nature.

[40]  Eline Boghaert,et al.  Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis , 2011, The EMBO journal.

[41]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[42]  J. Muschler,et al.  Cell-matrix interactions in mammary gland development and breast cancer. , 2010, Cold Spring Harbor perspectives in biology.

[43]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[44]  Elgene Lim,et al.  Open Access Research Article Transcriptome Analyses of Mouse and Human Mammary Cell Subpopulations Reveal Multiple Conserved Genes and Pathways , 2022 .

[45]  R. Metz,et al.  The bHLH/PAS transcription factor singleminded 2s promotes mammary gland lactogenic differentiation , 2010, Development.

[46]  L. Hennighausen,et al.  Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. , 2009, Genes & development.

[47]  O. Galm,et al.  Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer , 2009, BMC Cancer.

[48]  J. Visvader,et al.  Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. , 2008, Cell stem cell.

[49]  Andrew J Ewald,et al.  Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. , 2008, Developmental cell.

[50]  Marie-Liesse Asselin-Labat,et al.  The Ets transcription factor Elf5 specifies mammary alveolar cell fate. , 2008, Genes & development.

[51]  S. Merajver,et al.  BRCA1 regulates human mammary stem/progenitor cell fate , 2008, Proceedings of the National Academy of Sciences.

[52]  R. Sachidanandam,et al.  A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells , 2007 .

[53]  Marie-Liesse Asselin-Labat,et al.  Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation , 2007, Nature Cell Biology.

[54]  K. Fujiwara,et al.  Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. , 2007, American journal of physiology. Cell physiology.

[55]  Zena Werb,et al.  GATA-3 Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland , 2006, Cell.

[56]  Jing Ma,et al.  Acute Myeloid Leukemia-Associated Mkl1 (Mrtf-a) Is a Key Regulator of Mammary Gland Function , 2006, Molecular and Cellular Biology.

[57]  E. Olson,et al.  Requirement of a Myocardin-Related Transcription Factor for Development of Mammary Myoepithelial Cells , 2006, Molecular and Cellular Biology.

[58]  J. Thiery,et al.  Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. , 2006, Developmental biology.

[59]  Haiyan I. Li,et al.  Purification and unique properties of mammary epithelial stem cells , 2006, Nature.

[60]  François Vaillant,et al.  Generation of a functional mammary gland from a single stem cell , 2006, Nature.

[61]  M. Sternlicht,et al.  Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis , 2005, Breast Cancer Research.

[62]  S. Barsky,et al.  Myoepithelial Cells: Autocrine and Paracrine Suppressors of Breast Cancer Progression , 2005, Journal of Mammary Gland Biology and Neoplasia.

[63]  Richard A. Currie,et al.  E2A-PBX1 Interacts Directly with the KIX Domain of CBP/p300 in the Induction of Proliferation in Primary Hematopoietic Cells* , 2004, Journal of Biological Chemistry.

[64]  J. Rubenstein,et al.  Id4 regulates neural progenitor proliferation and differentiation in vivo , 2004, Development.

[65]  C. Pin,et al.  The E protein HEB is preferentially expressed in developing muscle. , 2004, Differentiation; research in biological diversity.

[66]  Brian T. Chait,et al.  E Protein Silencing by the Leukemogenic AML1-ETO Fusion Protein , 2004, Science.

[67]  G. Owens,et al.  Smooth Muscle &agr;-Actin Gene Requires Two E-Boxes for Proper Expression In Vivo and Is a Target of Class I Basic Helix-Loop-Helix Proteins , 2003, Circulation research.

[68]  A. Kiemer,et al.  Identification of genes involved in epithelial-mesenchymal transition and tumor progression , 2001, Oncogene.

[69]  C. Murre,et al.  Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms , 2000, Molecular and Cellular Biology.

[70]  Christopher P. Crum,et al.  p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development , 1999, Nature.

[71]  H. Vogel,et al.  p63 is a p53 homologue required for limb and epidermal morphogenesis , 1999, Nature.

[72]  J. Thiery,et al.  Myoepithelial cell diffeentiation in the developing mammary gland: Progressive acquisition of smooth muscle phenotype , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[73]  S. Coleman,et al.  Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland , 1990, The Journal of cell biology.

[74]  Harold Weintraub,et al.  The protein Id: A negative regulator of helix-loop-helix DNA binding proteins , 1990, Cell.

[75]  D. Medina,et al.  Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Williams,et al.  Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. , 1983, Developmental biology.