A global profile of germline gene expression in C. elegans.

[1]  D. Longo,et al.  The polo‐like kinase PLK‐1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans , 2000, Genesis.

[2]  D. Hirsh,et al.  Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. , 1999, Molecular biology of the cell.

[3]  S. Strome,et al.  Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. , 1999, Genes & development.

[4]  M. Boxem,et al.  The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. , 1999, Development.

[5]  J. Schumacher,et al.  AIR-2: An Aurora/Ipl1-related Protein Kinase Associated with Chromosomes and Midbody Microtubules Is Required for Polar Body Extrusion and Cytokinesis in Caenorhabditis elegans Embryos , 1998, The Journal of cell biology.

[6]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[7]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[9]  W. Wood,et al.  PGL-1, a Predicted RNA-Binding Component of Germ Granules, Is Essential for Fertility in C. elegans , 1998, Cell.

[10]  A. Villeneuve,et al.  Meiotic Recombination in C. elegans Initiates by a Conserved Mechanism and Is Dispensable for Homologous Chromosome Synapsis , 1998, Cell.

[11]  S. Strome,et al.  MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. , 1998, Development.

[12]  G. Jürgens,et al.  Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis , 1998, The EMBO journal.

[13]  Stanley Fields,et al.  A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line , 1997, Nature.

[14]  H. Horvitz,et al.  Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. , 1997, Genetics.

[15]  M. Metzstein,et al.  SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. , 1997, Development.

[16]  Goodwin,et al.  Translational control of development in C. elegans. , 1997, Seminars in cell & developmental biology.

[17]  G. Hunter,et al.  Cloning, Expression, and Characterization of Two Manganese Superoxide Dismutases from Caenorhabditis elegans * , 1997, The Journal of Biological Chemistry.

[18]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[19]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[20]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[21]  G. Rubin,et al.  Kuzbanian Controls Proteolytic Processing of Notch and Mediates Lateral Inhibition during Drosophila and Vertebrate Neurogenesis , 1997, Cell.

[22]  B. Berger,et al.  MultiCoil: A program for predicting two‐and three‐stranded coiled coils , 1997, Protein science : a publication of the Protein Society.

[23]  S. Ward,et al.  A nematode gene required for sperm vesicle fusion. , 1997, Journal of cell science.

[24]  J. Priess,et al.  The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. , 1997, Development.

[25]  J. Lieb,et al.  DPY-26, a Link Between Dosage Compensation and Meiotic Chromosome Segregation in the Nematode , 1996, Science.

[26]  M. Gruidl,et al.  Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. Greenwald,et al.  Evidence for Physical and Functional Association Between EMB-5 and LIN-12 in Caenorhabditis elegans , 1996, Science.

[28]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[29]  M. Bosenberg,et al.  lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). , 1996, Development.

[30]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[31]  T. Schedl,et al.  Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. , 1995, Genes & development.

[32]  C. Lehner,et al.  Caenorhabditis elegans cyclin A- and B-type genes: a cyclin A multigene family, an ancestral cyclin B3 and differential germline expression. , 1995, Journal of cell science.

[33]  S. Ward,et al.  The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. , 1995, Genes & development.

[34]  B. Draper,et al.  The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo , 1994, Cell.

[35]  P. Mains,et al.  mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. , 1994, Genetics.

[36]  S. L'Hernault,et al.  Genetic and molecular characterization of the Caenorhabditis elegans spermatogenesis-defective gene spe-17. , 1993, Genetics.

[37]  G. Roeder,et al.  ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis , 1993, Cell.

[38]  C. Heyting,et al.  A coiled‐coil related protein specific for synapsed regions of meiotic prophase chromosomes. , 1992, The EMBO journal.

[39]  S. Strome,et al.  Characterization of a germ-line proliferation mutation in C. elegans. , 1992, Development.

[40]  M. Ashburner,et al.  Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. , 1990, Genes & development.

[41]  S. Strome,et al.  A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. , 1989, Developmental biology.

[42]  J. Kimble,et al.  Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans , 1989, Cell.

[43]  T. Rosenquist,et al.  Molecular cloning and transcript analysis of fem-3, a sex-determination gene in Caenorhabditis elegans. , 1988, Genes & development.

[44]  A. Coulson,et al.  Genomic organization of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans. , 1988, Journal of molecular biology.

[45]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[46]  R. C. Anderson,et al.  Concepts in Nematode Systematics , 1983 .

[47]  S. Ward,et al.  Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. , 1983, Journal of molecular biology.

[48]  S. Ward,et al.  Intersex, a temperature-sensitive mutant of the nematode Caenorhabditis elegans. , 1978, Developmental biology.

[49]  P. Goldstein,et al.  Karyotype analysis of Ascaris lumbricoides var. suum. Male and female pachytene nuclei by 3-D reconstruction from electron microscopy of serial sections. , 1976, Chromosoma.

[50]  W. Zillig,et al.  Biosynthesis of virus protein in Escherichia coli C in vivo following infection with bacteriophage phi-X-174. , 1962, Journal of molecular biology.

[51]  M. White,et al.  Animal cytology and evolution. , 1955 .

[52]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[53]  R. Ellis,et al.  A novel member of the tob family of proteins controls sexual fate in Caenorhabditis elegans germ cells. , 2000, Developmental biology.

[54]  A. Bejsovec,et al.  Cellular mechanisms of wingless/Wnt signal transduction. , 1999, Current topics in developmental biology.

[55]  D. Riddle C. Elegans II , 1998 .

[56]  D. Riddle,et al.  Evolution -- C. elegans II , 1997 .

[57]  B. Meyer Sex Determination and X Chromosome Dosage Compensation , 1997 .

[58]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[59]  J. Fleming,et al.  Basic culture methods. , 1995, Methods in cell biology.

[60]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[61]  S. Ward,et al.  7 Germ-line Development and Fertilization , 1988 .

[62]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[63]  T. Schedl,et al.  Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. , 1987, Genetics.