The Longest Path Problem Is Polynomial on Interval Graphs

The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.

[1]  Joost-Pieter Katoen,et al.  Abstraction for Stochastic Systems by Erlang's Method of Stages , 2008, CONCUR.

[2]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[3]  Torsten Kuhlen,et al.  Utilizing optical sensors from mice for new input devices , 2006 .

[4]  J. Mark Keil Finding Hamiltonian Circuits in Interval Graphs , 1985, Inf. Process. Lett..

[5]  Thomas Noll,et al.  Algebraic Correctness Proofs for Compiling Recursive Function Definitions with Strictness Information , 2006, Acta Informatica.

[6]  Ryuhei Uehara,et al.  Efficient Algorithms for the Longest Path Problem , 2004, ISAAC.

[7]  Nathan R. Tallent,et al.  ADJOINT CODE BY SOURCE TRANSFORMATION WITH OPENAD/F , 2006 .

[8]  George B. Mertzios,et al.  An Optimal Algorithm for the k-Fixed-Endpoint Path Cover on Proper Interval Graphs , 2010, Math. Comput. Sci..

[9]  Volker Stolz,et al.  Temporal assertions for sequential and concurrent programs , 2007 .

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Benedikt Bollig,et al.  Replaying Play In and Play Out: Synthesis of Design Models from Scenarios by Learning , 2007, TACAS.

[12]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[13]  T. Kraußer,et al.  A Probabilistic Justification of the Combining Calculus under the Uniform Scheduler Assumption , 2007 .

[14]  Haiko Müller,et al.  Hamiltonian circuits in chordal bipartite graphs , 1996, Discret. Math..

[15]  Joachim Kneis,et al.  Satellites and Mirrors for Solving Independent Set on Sparse Graphs , 2009 .

[16]  C. Pandu Rangan,et al.  Linear Algorithm for Optimal Path Cover Problem on Interval Graphs , 1990, Inf. Process. Lett..

[17]  Yuxiao Hu,et al.  Optimal vertex elimination in single-expression-use graphs , 2008, TOMS.

[18]  Jan Borchers,et al.  Selexels: a Conceptual Framework for Pointing Devices with Low Expressiveness , 2006 .

[19]  Peter Damaschke,et al.  Paths in interval graphs and circular arc graphs , 1993, Discret. Math..

[20]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[21]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[22]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[23]  D. Kratsch,et al.  Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm , 1991 .

[24]  Jan Borchers,et al.  coJIVE: A System to Support Collaborative Jazz Improvisation , 2007 .

[25]  David R. Karger,et al.  On approximating the longest path in a graph , 1997, Algorithmica.

[26]  Harold N. Gabow,et al.  Finding paths and cycles of superpolylogarithmic length , 2004, STOC '04.

[27]  Jean Utke,et al.  OpenAD/F: A Modular Open-Source Tool for Automatic Differentiation of Fortran Codes , 2008, TOMS.

[28]  Uwe Naumann,et al.  Call Tree Reversal is NP-Complete , 2008 .

[29]  Glenn K. Manacher,et al.  An Optimum Theta (n log n) Algorithm for Finding a Canonical Hamiltonian Path and a Canonical Hamiltonian Circuit in a Set of Intervals , 1990, Inf. Process. Lett..

[30]  U. Naumann Syntax-Directed Derivative Code (Part I: Tangent-Linear Code) , 2005 .

[31]  Andreas Björklund,et al.  Finding a Path of Superlogarithmic Length , 2002, ICALP.

[32]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[33]  U. Naumann,et al.  Intraprocedural Adjoint Code Generated by the Differentiation-Enabled NAGWare Fortran Compiler , 2006 .

[34]  J. Klop,et al.  WST ’ 04 7 th International Workshop on Termination , 2004 .

[35]  Jürgen Giesl,et al.  Proving and Disproving Termination of Higher-Order Functions , 2005, FroCoS.

[36]  Ryuhei Uehara,et al.  Linear structure of bipartite permutation graphs and the longest path problem , 2007, Inf. Process. Lett..

[37]  Sundar Vishwanathan,et al.  An approximation algorithm for finding a long path in Hamiltonian graphs , 2000, SODA '00.

[38]  Thorsten Holz,et al.  An Offensive Approach to Teaching Information Security , 2005 .

[39]  Rajeev Motwani,et al.  Finding large cycles in Hamiltonian graphs , 2005, SODA '05.

[40]  Christof Löding,et al.  Unranked Tree Automata with Sibling Equalities and Disequalities , 2007, ICALP.

[41]  Joachim Kneis,et al.  Derandomizing Non-uniform Color-Coding I , 2009 .

[42]  Peter Damaschke,et al.  The Hamiltonian Circuit Problem for Circle Graphs is NP-Complete , 1989, Inf. Process. Lett..

[43]  Shmuel Zaks,et al.  A New Intersection Model and Improved Algorithms for Tolerance Graphs , 2009, SIAM J. Discret. Math..

[44]  Michael Weber,et al.  Parallel algorithms for verification on large systems , 2006 .

[45]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[46]  Harold N. Gabow,et al.  Finding Long Paths, Cycles and Circuits , 2008, ISAAC.

[47]  George B. Mertzios,et al.  Preemptive Scheduling of Equal-Length Jobs in Polynomial Time , 2010, Math. Comput. Sci..

[48]  Alan A. Bertossi,et al.  Finding Hamiltonian Circuits in Proper Interval Graphs , 1983, Inf. Process. Lett..

[49]  Felix C. Freiling,et al.  Botnet Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks , 2005, ESORICS.

[50]  Stefan Richter,et al.  A Faster Algorithm for the Steiner Tree Problem , 2006, STACS.

[51]  A. J. M. van Gasteren,et al.  On computing a longest path in a tree , 2002, Inf. Process. Lett..

[52]  Ryuhei Uehara,et al.  Longest Path Problems on Ptolemaic Graphs , 2008, IEICE Trans. Inf. Syst..

[53]  Zhao Zhang,et al.  Algorithms for long paths in graphs , 2007, Theor. Comput. Sci..

[54]  Frank G. Radmacher An Automata Theoretic Approach to the Theory of Rational Tree Relations , 2008 .