The Ubiquitin–Proteasome System of Saccharomyces cerevisiae

Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.

[1]  F. Delalande,et al.  Cdc 48 andUfd 3 , newpartners of theubiquitinprotease Ubp 3 , are required for ribophagy , 2013 .

[2]  Yong Tae Kwon,et al.  The N-end rule pathway. , 2012, Annual review of biochemistry.

[3]  Alexander Varshavsky,et al.  The ubiquitin system, an immense realm. , 2012, Annual review of biochemistry.

[4]  W. Tansey,et al.  Ubiquitin and proteasomes in transcription. , 2012, Annual review of biochemistry.

[5]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[6]  J. Reuther,et al.  Exploring the Topology of the Gid Complex, the E3 Ubiquitin Ligase Involved in Catabolite-induced Degradation of Gluconeogenic Enzymes* , 2012, The Journal of Biological Chemistry.

[7]  P. Coffino,et al.  Functional Asymmetries of Proteasome Translocase Pore* , 2012, The Journal of Biological Chemistry.

[8]  R. Guérois,et al.  Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly , 2012, Proceedings of the National Academy of Sciences.

[9]  Donghong Ju,et al.  The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. , 2012, Biochemical and biophysical research communications.

[10]  C. Lima,et al.  Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2 , 2012, Nature.

[11]  M. Glickman,et al.  Rpn1 and Rpn2 Coordinate Ubiquitin Processing Factors at Proteasome* , 2012, The Journal of Biological Chemistry.

[12]  D. Finley,et al.  Cell biology: Destruction deconstructed , 2012, Nature.

[13]  T. Mizushima,et al.  Structural Basis for Specific Recognition of Rpt1p, an ATPase Subunit of 26 S Proteasome, by Proteasome-dedicated Chaperone Hsm3p*♦ , 2012, The Journal of Biological Chemistry.

[14]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[15]  R. Aebersold,et al.  Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach , 2012, Proceedings of the National Academy of Sciences.

[16]  O. Panasenko,et al.  The Ccr4--not complex. , 2012, Gene.

[17]  K. Hofmann,et al.  Inhibition of homologous recombination by the PCNA-interacting protein PARI. , 2012, Molecular cell.

[18]  S. Gygi,et al.  APC/C-mediated multiple monoubiquitination provides an alternative degradation signal for cyclin B1 , 2012, Nature Cell Biology.

[19]  F. Förster,et al.  Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy , 2012, Proceedings of the National Academy of Sciences.

[20]  Gabriel C. Lander,et al.  Complete subunit architecture of the proteasome regulatory particle , 2011, Nature.

[21]  J. Parker,et al.  The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA , 2011, Nucleic acids research.

[22]  R. Klevit,et al.  Following Ariadne's thread: a new perspective on RBR ubiquitin ligases , 2012, BMC Biology.

[23]  M. Hochstrasser,et al.  Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. , 2011, Molecular cell.

[24]  A. Sali,et al.  The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together , 2011, Proceedings of the National Academy of Sciences.

[25]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[26]  J. Weissman,et al.  Road to Ruin: Targeting Proteins for Degradation in the Endoplasmic Reticulum , 2011, Science.

[27]  T. Nyström,et al.  Segregation of Protein Aggregates Involves Actin and the Polarity Machinery , 2011, Cell.

[28]  S. Emr,et al.  TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor , 2011, Cell.

[29]  D. Toczyski,et al.  Ubiquitination of Cdc20 by the APC Occurs through an Intramolecular Mechanism , 2011, Current Biology.

[30]  L. Voesenek,et al.  Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization , 2011, Nature.

[31]  D. O. Morgan,et al.  Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes* , 2011, The Journal of Biological Chemistry.

[32]  Julia M. Schulze,et al.  Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. , 2011, Genes & development.

[33]  A. Goldberg,et al.  Blm10 Protein Promotes Proteasomal Substrate Turnover by an Active Gating Mechanism* , 2011, The Journal of Biological Chemistry.

[34]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[35]  V. Measday,et al.  Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins , 2011, Nature Cell Biology.

[36]  David O. Morgan,et al.  Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase , 2011, Nature.

[37]  R. Dohmen,et al.  Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA , 2011, Nature.

[38]  Christopher J. Murakami,et al.  Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae , 2011, PLoS genetics.

[39]  J. Roelofs,et al.  Loss of Rpt5 Protein Interactions with the Core Particle and Nas2 Protein Causes the Formation of Faulty Proteasomes That Are Inhibited by Ecm29 Protein* , 2011, The Journal of Biological Chemistry.

[40]  S. Gygi,et al.  Structural Defects in the Regulatory Particle-Core Particle Interface of the Proteasome Induce a Novel Proteasome Stress Response* , 2011, The Journal of Biological Chemistry.

[41]  Min Jae Lee,et al.  An asymmetric interface between the regulatory particle and core particle of the proteasome , 2011, Nature Structural &Molecular Biology.

[42]  T. Ishii,et al.  Ubiquitin chains in the Dsk2 UBL domain mediate Dsk2 stability and protein degradation in yeast. , 2011, Biochemical and Biophysical Research Communications - BBRC.

[43]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[44]  A. Varshavsky The N‐end rule pathway and regulation by proteolysis , 2011, Protein science : a publication of the Protein Society.

[45]  Scott D Emr,et al.  The ESCRT pathway. , 2011, Developmental cell.

[46]  M. Peter,et al.  Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon osmostress , 2011, The EMBO journal.

[47]  R. Gardner,et al.  How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis , 2011, Nucleus.

[48]  Thomas I. Milac,et al.  Exposed hydrophobicity is a key determinant of nuclear quality control degradation , 2011, Molecular biology of the cell.

[49]  Pedro Carvalho,et al.  A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. , 2011, Molecular cell.

[50]  Robert T Sauer,et al.  AAA+ proteases: ATP-fueled machines of protein destruction. , 2011, Annual review of biochemistry.

[51]  Michael J. Sweredoski,et al.  Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1 , 2011, BMC Biology.

[52]  P. Kaiser,et al.  Ubiquitin and transcription , 2011 .

[53]  Rachel E. Klevit,et al.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids , 2011, Nature.

[54]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[55]  K. Luger,et al.  The Histone Chaperone FACT: Structural Insights and Mechanisms for Nucleosome Reorganization* , 2011, The Journal of Biological Chemistry.

[56]  S. Gygi,et al.  A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis* , 2011, Molecular & Cellular Proteomics.

[57]  K. Gould,et al.  State of the APC/C: Organization, function, and structure , 2011, Critical reviews in biochemistry and molecular biology.

[58]  John Kuriyan,et al.  The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2 , 2011, Cell.

[59]  K. Tar,et al.  Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10 , 2011, Molecular biology of the cell.

[60]  T. Davis,et al.  The Essential Ubc4/Ubc5 Function in Yeast Is HECT E3-dependent, and RING E3-dependent Pathways Require Only Monoubiquitin Transfer by Ubc4* , 2011, The Journal of Biological Chemistry.

[61]  Christian Reis,et al.  ATP Binds to Proteasomal ATPases in Pairs with Distinct Functional Effects, Implying an Ordered Reaction Cycle , 2011, Cell.

[62]  O. Panasenko,et al.  Not4 E3 Ligase Contributes to Proteasome Assembly and Functional Integrity in Part through Ecm29 , 2011, Molecular and Cellular Biology.

[63]  D. Hoogstraten,et al.  C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation , 2011, Nature communications.

[64]  M. Hochstrasser,et al.  A Conserved 20S Proteasome Assembly Factor Requires a C-terminal HbYX Motif for Proteasomal Precursor Binding , 2011, Nature Structural &Molecular Biology.

[65]  S. Elsasser,et al.  Rad23 escapes degradation because it lacks a proteasome initiation region , 2011, Nature communications.

[66]  R. Piper,et al.  A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination , 2011, The Journal of cell biology.

[67]  Thomas I. Milac,et al.  Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. , 2011, Molecular cell.

[68]  R. Deshaies,et al.  Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. , 2011, Molecular cell.

[69]  C. Semple,et al.  The retroviral proteinase active site and the N‐terminus of Ddi1 are required for repression of protein secretion , 2011, FEBS letters.

[70]  Edward P. Morris,et al.  Structures of APC/CCdh1 with substrates identify Cdh1 and Apc10 as the D-box co-receptor , 2010, Nature.

[71]  P. Kaiser,et al.  Ubiquitin and transcription: The SCF/Met4 pathway, a (protein-) complex issue. , 2011, Transcription.

[72]  A. Ciechanover,et al.  Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-κB precursor. , 2011, Advances in experimental medicine and biology.

[73]  A. Goldberg,et al.  Blm 10 promotes proteasomal substrate turnover by an active gating mechanism , 2011 .

[74]  D. Hartl,et al.  Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast , 2010, Proceedings of the National Academy of Sciences.

[75]  L. Hendershot,et al.  Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. , 2010, Molecular cell.

[76]  P. Kaiser,et al.  A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. , 2010, Molecular cell.

[77]  N. Zheng,et al.  Structural assembly of cullin-RING ubiquitin ligase complexes. , 2010, Current opinion in structural biology.

[78]  A. Goldberg,et al.  ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. , 2010, Molecular cell.

[79]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[80]  R. Deshaies,et al.  Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins , 2010, Proceedings of the National Academy of Sciences.

[81]  B. Bukau,et al.  Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. , 2010, Molecular cell.

[82]  Daniel Auerbach,et al.  The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases , 2010, Nature Cell Biology.

[83]  Joonhee Kim,et al.  Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases , 2010, Nature Structural &Molecular Biology.

[84]  Maitreya J. Dunham,et al.  Identification of Aneuploidy-Tolerating Mutations , 2010, Cell.

[85]  C. Joazeiro,et al.  Role of a ribosome-associated E3 ubiquitin ligase in protein quality control , 2010, Nature.

[86]  E. Eskelinen,et al.  Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8 , 2010, The Journal of cell biology.

[87]  A. Corbett,et al.  Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. , 2010, Genes & development.

[88]  D. Klionsky,et al.  Regulation of macroautophagy in Saccharomyces cerevisiae. , 2010, Seminars in cell & developmental biology.

[89]  S. Jentsch,et al.  Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA , 2010, The EMBO journal.

[90]  Junhong Han,et al.  Ubiquitylation of FACT by the cullin-E3 ligase Rtt101 connects FACT to DNA replication. , 2010, Genes & development.

[91]  Alain Van Dorsselaer,et al.  Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy , 2010, EMBO reports.

[92]  D. Ng,et al.  A Nucleus-based Quality Control Mechanism for Cytosolic Proteins , 2010, Molecular biology of the cell.

[93]  H. Walden,et al.  Ubiquitin signalling in DNA replication and repair , 2010, Nature Reviews Molecular Cell Biology.

[94]  Nadinath B. Nillegoda,et al.  Ubr1 and Ubr2 Function in a Quality Control Pathway for Degradation of Unfolded Cytosolic Proteins , 2010, Molecular biology of the cell.

[95]  Min Jae Lee,et al.  Enhancement of Proteasome Activity by a Small-Molecule Inhibitor of Usp14 , 2010, Nature.

[96]  Y. Saeki,et al.  Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. , 2010, Biochemical and biophysical research communications.

[97]  S. Gygi,et al.  Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. , 2010, Molecular cell.

[98]  R. Erdmann,et al.  Peroxisomal protein translocation. , 2010, Biochimica et biophysica acta.

[99]  J. Svejstrup The interface between transcription and mechanisms maintaining genome integrity. , 2010, Trends in biochemical sciences.

[100]  Jimin Wang,et al.  Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. , 2010, Molecular cell.

[101]  E. Hurt,et al.  Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module , 2010, Cell.

[102]  A. Davies,et al.  Ubiquitin-dependent DNA damage bypass is separable from genome replication , 2010, Nature.

[103]  K. Hofmann,et al.  The Yeast E4 Ubiquitin Ligase Ufd2 Interacts with the Ubiquitin-like Domains of Rad23 and Dsk2 via a Novel and Distinct Ubiquitin-like Binding Domain* , 2010, The Journal of Biological Chemistry.

[104]  S. Jentsch,et al.  The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase , 2010, Cell.

[105]  J. Ju,et al.  Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy. , 2010, Human molecular genetics.

[106]  H. Ulrich,et al.  Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains , 2010, Proceedings of the National Academy of Sciences.

[107]  B. André,et al.  The ubiquitin code of yeast permease trafficking. , 2010, Trends in cell biology.

[108]  J. Hurley,et al.  VHS domains of ESCRT‐0 cooperate in high‐avidity binding to polyubiquitinated cargo , 2010, The EMBO journal.

[109]  K. Sadre-Bazzaz,et al.  Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. , 2010, Molecular cell.

[110]  Donghong Ju,et al.  Proteasomal Degradation of Rpn4 in Saccharomyces cerevisiae Is Critical for Cell Viability Under Stressed Conditions , 2010, Genetics.

[111]  Joshua D. Schnell,et al.  The Function of Yeast Epsin and Ede1 Ubiquitin‐Binding Domains During Receptor Internalization , 2010, Traffic.

[112]  J. Diffley The many faces of redundancy in DNA replication control. , 2010, Cold Spring Harbor symposia on quantitative biology.

[113]  R. Hampton,et al.  Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1 , 2009, Proceedings of the National Academy of Sciences.

[114]  M. Glickman,et al.  Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. , 2009, Molecular cell.

[115]  D. Kornitzer,et al.  The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity , 2009, Molecular and Cellular Biology.

[116]  A. Goldberg,et al.  Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. , 2009, Molecular cell.

[117]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[118]  R. Conaway,et al.  Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation , 2009, Proceedings of the National Academy of Sciences.

[119]  K. Shirahige,et al.  SCFDia2 regulates DNA replication forks during S‐phase in budding yeast , 2009, The EMBO journal.

[120]  R. Hartmann-Petersen,et al.  New ATPase regulators--p97 goes to the PUB. , 2009, The international journal of biochemistry & cell biology.

[121]  K. Labib,et al.  The Amino-Terminal TPR Domain of Dia2 Tethers SCFDia2 to the Replisome Progression Complex , 2009, Current Biology.

[122]  H. Pelham,et al.  Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters , 2009, Traffic.

[123]  D. Koepp,et al.  Activation of the S-Phase Checkpoint Inhibits Degradation of the F-Box Protein Dia2 , 2009, Molecular and Cellular Biology.

[124]  J. Parker,et al.  Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5 , 2009, The EMBO journal.

[125]  R. Deshaies,et al.  Gal4 turnover and transcription activation , 2009, Nature.

[126]  D. Wolf,et al.  Sec61p is part of the endoplasmic reticulum‐associated degradation machinery , 2009, The EMBO journal.

[127]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[128]  Harald W. Platta,et al.  Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import , 2009, Molecular and Cellular Biology.

[129]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[130]  M. Pagano,et al.  SnapShot: F Box Proteins II , 2009, Cell.

[131]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[132]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[133]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[134]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[135]  Minoru Funakoshi,et al.  Multiple Assembly Chaperones Govern Biogenesis of the Proteasome Regulatory Particle Base , 2009, Cell.

[136]  Yasushi Saeki,et al.  Multiple Proteasome-Interacting Proteins Assist the Assembly of the Yeast 19S Regulatory Particle , 2009, Cell.

[137]  Keiji Tanaka,et al.  Assembly Pathway of the Mammalian Proteasome Base Subcomplex Is Mediated by Multiple Specific Chaperones , 2009, Cell.

[138]  R. Haguenauer‐Tsapis,et al.  Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. , 2009, Experimental cell research.

[139]  Yigong Shi,et al.  Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. , 2009, Molecular cell.

[140]  S. Paiva,et al.  Glucose-induced Ubiquitylation and Endocytosis of the Yeast Jen1 Transporter , 2009, The Journal of Biological Chemistry.

[141]  B. André,et al.  K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway , 2009, The Journal of cell biology.

[142]  Keiji Tanaka,et al.  An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis , 2009, Cell.

[143]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[144]  R. Piper,et al.  ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting , 2009, The Journal of cell biology.

[145]  Fan Zhang,et al.  Chaperone-mediated pathway of proteasome regulatory particle assembly , 2009, Nature.

[146]  Ian M. Fingerman,et al.  Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. , 2009, Genes & development.

[147]  S. Gygi,et al.  Hexameric assembly of the proteasomal ATPases is templated through their C-termini , 2009, Nature.

[148]  A. Gunjan,et al.  Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis , 2009, Nature Cell Biology.

[149]  Hyung cheol Kim,et al.  Polyubiquitination by HECT E3s and the Determinants of Chain Type Specificity , 2009, Molecular and Cellular Biology.

[150]  J. Game,et al.  The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. , 2009, DNA repair.

[151]  H. Ulrich,et al.  Regulating post-translational modifications of the eukaryotic replication clamp PCNA. , 2009, DNA repair.

[152]  D. Hoogstraten,et al.  The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. , 2009, DNA repair.

[153]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[154]  T. Sommer,et al.  The ubiquitylation machinery of the endoplasmic reticulum , 2009, Nature.

[155]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[156]  M. Hochstrasser,et al.  Origin and function of ubiquitin-like proteins , 2009, Nature.

[157]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[158]  Mary Ellen Wiltrout,et al.  Eukaryotic Translesion Polymerases and Their Roles and Regulation in DNA Damage Tolerance , 2009, Microbiology and Molecular Biology Reviews.

[159]  A. Ciechanover,et al.  Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. , 2009, Molecular cell.

[160]  Yasushi Saeki,et al.  Lysine 63‐linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome , 2009, The EMBO journal.

[161]  Raphaël Guérois,et al.  Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. , 2009, Molecular cell.

[162]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[163]  Fabrice David,et al.  Ribosome Association and Stability of the Nascent Polypeptide-Associated Complex Is Dependent Upon Its Own Ubiquitination , 2009, Genetics.

[164]  Thomas Sommer,et al.  Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum , 2009, The Journal of cell biology.

[165]  M. B. Metzger,et al.  Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. , 2008, Molecular biology of the cell.

[166]  A. Matouschek,et al.  Substrate selection by the proteasome during degradation of protein complexes , 2008, Nature chemical biology.

[167]  Andreas Matouschek,et al.  Targeting proteins for degradation. , 2009, Nature chemical biology.

[168]  M. Pagano,et al.  SnapShot: F Box Proteins I , 2009, Cell.

[169]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[170]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[171]  D. Wolf,et al.  Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1 , 2008, FEBS letters.

[172]  M. Muratani,et al.  Modulation of RNA polymerase II subunit composition by ubiquitylation , 2008, Proceedings of the National Academy of Sciences.

[173]  Jianli Lu,et al.  Electrostatics in the ribosomal tunnel modulate chain elongation rates. , 2008, Journal of molecular biology.

[174]  S. Emr,et al.  Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface , 2008, Cell.

[175]  S. Gygi,et al.  Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. , 2008, Molecular cell.

[176]  Anjanabha Saha,et al.  Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation , 2008, Molecular cell.

[177]  T. Orr-Weaver,et al.  Regulation of APC/C activators in mitosis and meiosis. , 2008, Annual review of cell and developmental biology.

[178]  M. van den Berg,et al.  Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. , 2008, Biochemical and biophysical research communications.

[179]  M. Peter,et al.  Rtt101 and Mms1 in budding yeast form a CUL4DDB1‐like ubiquitin ligase that promotes replication through damaged DNA , 2008, EMBO reports.

[180]  N. Koyama,et al.  A refined two-hybrid system reveals that SCFCdc4-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry , 2008, Proceedings of the National Academy of Sciences.

[181]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[182]  O. Nureki,et al.  Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains , 2008, Nature.

[183]  Lan Huang,et al.  Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. , 2008, Journal of proteome research.

[184]  M. Hochstrasser,et al.  Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis , 2008, Biological chemistry.

[185]  Y. Araki,et al.  Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast. , 2008, RNA.

[186]  Tommer Ravid,et al.  Diversity of degradation signals in the ubiquitin–proteasome system , 2008, Nature Reviews Molecular Cell Biology.

[187]  Daniel Kaganovich,et al.  Misfolded proteins partition between two distinct quality control compartments , 2008, Nature.

[188]  A. Davies,et al.  SUMO modification of PCNA is controlled by DNA , 2008, The EMBO journal.

[189]  Kay Hofmann,et al.  The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. , 2008, Molecular biology of the cell.

[190]  D. Wolf,et al.  Ubiquitin Ligase Hul5 Is Required for Fragment-specific Substrate Degradation in Endoplasmic Reticulum-associated Degradation* , 2008, Journal of Biological Chemistry.

[191]  R. Haguenauer‐Tsapis,et al.  Ear1p and Ssh4p are new adaptors of the ubiquitin ligase Rsp5p for cargo ubiquitylation and sorting at multivesicular bodies. , 2008, Molecular biology of the cell.

[192]  B. Warscheid,et al.  Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor* , 2008, Journal of Biological Chemistry.

[193]  H. Erdjument-Bromage,et al.  Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. , 2008, Molecular cell.

[194]  Ivan Dikic,et al.  Proteasome subunit Rpn13 is a novel ubiquitin receptor , 2008, Nature.

[195]  R. Hampton,et al.  Cue1p Is an Activator of Ubc7p E2 Activity in Vitro and in Vivo* , 2008, Journal of Biological Chemistry.

[196]  John A Tainer,et al.  A SIM-ultaneous role for SUMO and ubiquitin. , 2008, Trends in biochemical sciences.

[197]  E. Sontheimer,et al.  A role for ubiquitin in the spliceosome assembly pathway , 2008, Nature Structural &Molecular Biology.

[198]  A. Buchberger,et al.  UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97 , 2008, Cellular and Molecular Life Sciences.

[199]  A. Davies,et al.  Activation of Ubiquitin-Dependent DNA Damage Bypass Is Mediated by Replication Protein A , 2008, Molecular cell.

[200]  Minoru Funakoshi,et al.  A multimeric assembly factor controls the formation of alternative 20S proteasomes , 2008, Nature Structural &Molecular Biology.

[201]  Kenta Okamoto,et al.  Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes , 2008, Nature Structural &Molecular Biology.

[202]  P. Coffino,et al.  Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. , 2008, The Biochemical journal.

[203]  Donghong Ju,et al.  Genome-Wide Analysis Identifies MYND-Domain Protein Mub1 as an Essential Factor for Rpn4 Ubiquitylation , 2007, Molecular and Cellular Biology.

[204]  R. Dohmen,et al.  The C-terminal Extension of the β7 Subunit and Activator Complexes Stabilize Nascent 20 S Proteasomes and Promote Their Maturation* , 2007, Journal of Biological Chemistry.

[205]  Erica S. Johnson,et al.  Ubiquitin-dependent Proteolytic Control of SUMO Conjugates* , 2007, Journal of Biological Chemistry.

[206]  Mary B. Kroetz,et al.  The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation* , 2007, Journal of Biological Chemistry.

[207]  M. MacCoss,et al.  Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate Repertoire Influenced by the Rpn10 Receptor Pathway*S , 2007, Molecular & Cellular Proteomics.

[208]  M. Fransen,et al.  Ubiquitination of Mammalian Pex5p, the Peroxisomal Import Receptor* , 2007, Journal of Biological Chemistry.

[209]  David P. Toczyski,et al.  A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic–gluconeogenic switch , 2007, Nature Cell Biology.

[210]  R. Marmorstein,et al.  Molecular basis for bre5 cofactor recognition by the ubp3 deubiquitylating enzyme. , 2007, Journal of molecular biology.

[211]  Soyeon Park,et al.  Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. , 2007, Molecular cell.

[212]  Raphaël Guérois,et al.  20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. , 2007, Molecular cell.

[213]  David O. Morgan,et al.  Sequential E2s Drive Polyubiquitin Chain Assembly on APC Targets , 2007, Cell.

[214]  N. Krogan,et al.  Ubiquitination Screen Using Protein Microarrays for Comprehensive Identification of Rsp5 Substrates in Yeast , 2022 .

[215]  E. Wiertz,et al.  Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3 , 2007, The Journal of cell biology.

[216]  S. Jentsch,et al.  PCNA, the Maestro of the Replication Fork , 2007, Cell.

[217]  D. Finley,et al.  A Ubiquitin Stress Response Induces Altered Proteasome Composition , 2007, Cell.

[218]  C. Richter,et al.  Dual mechanisms specify Doa4‐mediated deubiquitination at multivesicular bodies , 2007, The EMBO journal.

[219]  A. Emili,et al.  β‐Subunit appendages promote 20S proteasome assembly by overcoming an Ump1‐dependent checkpoint , 2007, The EMBO journal.

[220]  R. Deshaies,et al.  A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. , 2007, Molecular biology of the cell.

[221]  Harald W. Platta,et al.  Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling , 2007, The Journal of cell biology.

[222]  Wei Li,et al.  A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate , 2007, Nature.

[223]  F. Eisenhaber,et al.  The ring between ring fingers (RBR) protein family , 2007, Genome Biology.

[224]  M. Hochstrasser,et al.  Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue , 2007, Nature Cell Biology.

[225]  L. Prakash,et al.  ELA1 and CUL3 Are Required Along with ELC1 for RNA Polymerase II Polyubiquitylation and Degradation in DNA-Damaged Yeast Cells , 2007, Molecular and Cellular Biology.

[226]  D. Haines,et al.  Cdc48p(Npl4p/Ufd1p) binds and segregates membrane-anchored/tethered complexes via a polyubiquitin signal present on the anchors. , 2007, Molecular cell.

[227]  T. Gillette,et al.  Nucleotide excision repair and the ubiquitin proteasome pathway--do all roads lead to Rome? , 2007, DNA repair.

[228]  Jennifer Apodaca,et al.  Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. , 2007, BioTechniques.

[229]  J. Parker,et al.  Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae , 2007, Nucleic acids research.

[230]  Hiroyuki Araki,et al.  CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast , 2007, Nature.

[231]  J. Diffley,et al.  Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast , 2007, Nature.

[232]  P. Coffino,et al.  Proteasome substrate degradation requires association plus extended peptide , 2007, The EMBO journal.

[233]  Sebastian Rumpf,et al.  Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway? , 2007, Trends in biochemical sciences.

[234]  S. Gygi,et al.  Ubiquitin Chains Are Remodeled at the Proteasome by Opposing Ubiquitin Ligase and Deubiquitinating Activities , 2006, Cell.

[235]  A. Amerik,et al.  A conserved late endosome–targeting signal required for Doa4 deubiquitylating enzyme function , 2006, The Journal of cell biology.

[236]  J. Huibregtse,et al.  The Deubiquitinating Enzyme Ubp2 Modulates Rsp5-dependent Lys63-linked Polyubiquitin Conjugates in Saccharomyces cerevisiae*> , 2006, Journal of Biological Chemistry.

[237]  D. Fass,et al.  Ddi1, a eukaryotic protein with the retroviral protease fold. , 2006, Journal of molecular biology.

[238]  Catherine Dargemont,et al.  Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription , 2006, Proceedings of the National Academy of Sciences.

[239]  Marc Feuermann,et al.  The Yeast Ccr4-Not Complex Controls Ubiquitination of the Nascent-associated Polypeptide (NAC-EGD) Complex* , 2006, Journal of Biological Chemistry.

[240]  M. Hochstrasser,et al.  Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase , 2006, Nature.

[241]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[242]  S. Gygi,et al.  Deubiquitinating Enzyme Ubp6 Functions Noncatalytically to Delay Proteasomal Degradation , 2006, Cell.

[243]  Cynthia Wolberger,et al.  Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation , 2006, Nature Structural &Molecular Biology.

[244]  P. Freemont,et al.  Going through the motions: the ATPase cycle of p97. , 2006, Journal of structural biology.

[245]  Y. Ye Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. , 2006, Journal of structural biology.

[246]  I. Dikic,et al.  Ubiquitin-Binding Motifs in REV1 Protein Are Required for Its Role in the Tolerance of DNA Damage , 2006, Molecular and Cellular Biology.

[247]  T. Kodadek,et al.  Widespread, but Non-identical, Association of Proteasomal 19 and 20 S Proteins with Yeast Chromatin* , 2006, Journal of Biological Chemistry.

[248]  M. Osley Regulation of histone H2A and H2B ubiquitylation. , 2006, Briefings in functional genomics & proteomics.

[249]  S. Jentsch,et al.  PCNA controls establishment of sister chromatid cohesion during S phase. , 2006, Molecular cell.

[250]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[251]  P. Kaiser,et al.  The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division , 2006, Cell Division.

[252]  J. Game,et al.  The RAD6/BRE1 Histone Modification Pathway in Saccharomyces Confers Radiation Resistance Through a RAD51-Dependent Process That Is Independent of RAD18 , 2006, Genetics.

[253]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[254]  Jonathan S. Weissman,et al.  A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation , 2006, Cell.

[255]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[256]  S. Jentsch,et al.  Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site , 2006, Nature Structural &Molecular Biology.

[257]  H. Shinagawa,et al.  Functional and Physical Interaction of Yeast Mgs1 with PCNA: Impact on RAD6-Dependent DNA Damage Tolerance , 2006, Molecular and Cellular Biology.

[258]  M. Latterich,et al.  p97: The cell's molecular purgatory? , 2006, Molecular cell.

[259]  S. Johnston,et al.  Distinct functions of the ubiquitin–proteasome pathway influence nucleotide excision repair , 2006, The EMBO journal.

[260]  Ali Shilatifard,et al.  Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. , 2006, Annual review of biochemistry.

[261]  L. Prakash,et al.  Requirement of ELC1 for RNA Polymerase II Polyubiquitylation and Degradation in Response to DNA Damage in Saccharomyces cerevisiae , 2006, Molecular and Cellular Biology.

[262]  D. Reinberg,et al.  Histone H2B Monoubiquitination Functions Cooperatively with FACT to Regulate Elongation by RNA Polymerase II , 2006, Cell.

[263]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[264]  Donghong Ju,et al.  Identification of the Preferential Ubiquitination Site and Ubiquitin-dependent Degradation Signal of Rpn4* , 2006, Journal of Biological Chemistry.

[265]  M. Peter,et al.  The Cullin Rtt101p Promotes Replication Fork Progression through Damaged DNA and Natural Pause Sites , 2006, Current Biology.

[266]  P. Kaiser,et al.  A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome , 2006, Nature Cell Biology.

[267]  W. Xiao,et al.  Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reductase genes , 2006, Nucleic acids research.

[268]  Pierre Baldi,et al.  A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions , 2006, Molecular & Cellular Proteomics.

[269]  P. Silver,et al.  Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. , 2006, Molecular cell.

[270]  Grant W. Brown,et al.  Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae. , 2006, DNA repair.

[271]  T. Kodadek,et al.  The proteasomal ATPase complex is required for stress-induced transcription in yeast , 2006, Nucleic acids research.

[272]  H. Pelham,et al.  Transferrin receptor‐like proteins control the degradation of a yeast metal transporter , 2006, The EMBO journal.

[273]  Sebastian A. Wagner,et al.  Regulation of ubiquitin-binding proteins by monoubiquitination , 2006, Nature Cell Biology.

[274]  S. Jentsch,et al.  Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. , 2006, Molecular cell.

[275]  Erik J Sontheimer,et al.  Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. , 2005, RNA.

[276]  J. Pines Mitosis: a matter of getting rid of the right protein at the right time. , 2006, Trends in cell biology.

[277]  J. Keller,et al.  Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? , 2006, Free radical biology & medicine.

[278]  Hongtao Yu,et al.  Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[279]  P. Burgers,et al.  Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[280]  G. Wider,et al.  Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis , 2005, Science.

[281]  Thomas Walz,et al.  ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. , 2005, Molecular cell.

[282]  J. Workman,et al.  The Proteasome Regulatory Particle Alters the SAGA Coactivator to Enhance Its Interactions with Transcriptional Activators , 2005, Cell.

[283]  R. Deshaies,et al.  A putative stimulatory role for activator turnover in gene expression , 2005, Nature.

[284]  Yigong Shi,et al.  Structure and mechanisms of the proteasome‐associated deubiquitinating enzyme USP14 , 2005, The EMBO journal.

[285]  A. Buchberger,et al.  Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation , 2005, Nature Cell Biology.

[286]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[287]  Brian Kuhlman,et al.  E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer , 2005, Nature Structural &Molecular Biology.

[288]  T. Sommer,et al.  ERAD: the long road to destruction , 2005, Nature Cell Biology.

[289]  K. Rosenkranz,et al.  Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol , 2005, Nature Cell Biology.

[290]  S. Elsasser,et al.  Delivery of ubiquitinated substrates to protein-unfolding machines , 2005, Nature Cell Biology.

[291]  Boris Pfander,et al.  SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase , 2005, Nature.

[292]  J. Huibregtse,et al.  The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme , 2005, The EMBO journal.

[293]  D. Gottschling,et al.  Ubp10/Dot4p Regulates the Persistence of Ubiquitinated Histone H2B: Distinct Roles in Telomeric Silencing and General Chromatin , 2005, Molecular and Cellular Biology.

[294]  Efterpi Papouli,et al.  Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. , 2005, Molecular cell.

[295]  K. Cadwell,et al.  Ubiquitination on Nonlysine Residues by a Viral E3 Ubiquitin Ligase , 2005, Science.

[296]  P. Kloetzel,et al.  IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[297]  M. Masucci,et al.  The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. , 2005, Molecular cell.

[298]  Manuel S Rodríguez,et al.  The mRNA Nuclear Export Factor Hpr1 Is Regulated by Rsp5-mediated Ubiquitylation* , 2005, Journal of Biological Chemistry.

[299]  S. Gygi,et al.  The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle , 2005, Nature Structural &Molecular Biology.

[300]  K. Shokat,et al.  The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing , 2005, Cell.

[301]  D. Gottschling,et al.  Degradation-Mediated Protein Quality Control in the Nucleus , 2005, Cell.

[302]  N. Krogan,et al.  Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. , 2005, Molecular cell.

[303]  R. Huber,et al.  Molecular Machines for Protein Degradation , 2005, Chembiochem : a European journal of chemical biology.

[304]  N. Krogan,et al.  Histone H2B Ubiquitylation Is Associated with Elongating RNA Polymerase II , 2005, Molecular and Cellular Biology.

[305]  S. Jentsch,et al.  A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting , 2005, Cell.

[306]  A. Shearer,et al.  Lipid‐mediated, reversible misfolding of a sterol‐sensing domain protein , 2005, The EMBO journal.

[307]  Christopher W. Carroll,et al.  The APC Subunit Doc1 Promotes Recognition of the Substrate Destruction Box , 2005, Current Biology.

[308]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[309]  X. Mao,et al.  Rpn4 Is a Physiological Substrate of the Ubr2 Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[310]  S. Jentsch,et al.  Productive RUPture: activation of transcription factors by proteasomal processing. , 2004, Biochimica et biophysica acta.

[311]  Mike Tyers,et al.  A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. , 2004, Biochimica et biophysica acta.

[312]  G. Shaw,et al.  Solution Structure of the Flexible Class II Ubiquitin-conjugating Enzyme Ubc1 Provides Insights for Polyubiquitin Chain Assembly*♦ , 2004, Journal of Biological Chemistry.

[313]  R. Isaacson,et al.  p97 and close encounters of every kind: a brief review. , 2004, Biochemical Society transactions.

[314]  A. Matouschek,et al.  An unstructured initiation site is required for efficient proteasome-mediated degradation , 2004, Nature Structural &Molecular Biology.

[315]  Natalie Luhtala,et al.  Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes , 2004, The Journal of cell biology.

[316]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[317]  K. Mi,et al.  Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. , 2004, Molecular biology of the cell.

[318]  D. Finley,et al.  Rad23 and Rpn10 Serve as Alternative Ubiquitin Receptors for the Proteasome* , 2004, Journal of Biological Chemistry.

[319]  D. Ng,et al.  Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control , 2004, The Journal of cell biology.

[320]  Karl Henry,et al.  Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. , 2004, Genes & development.

[321]  Li Chen,et al.  Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. , 2004, Nucleic acids research.

[322]  K. Wilkinson,et al.  Pleiotropic Effects of Ubp6 Loss on Drug Sensitivities and Yeast Prion Are Due to Depletion of the Free Ubiquitin Pool* , 2003, Journal of Biological Chemistry.

[323]  D. Finley,et al.  Ubiquitin Depletion as a Key Mediator of Toxicity by Translational Inhibitors , 2003, Molecular and Cellular Biology.

[324]  Ali Shilatifard,et al.  Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. , 2003, Genes & development.

[325]  M. Pagano,et al.  Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation , 2003, Cell.

[326]  C. Enenkel,et al.  Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly , 2003, EMBO reports.

[327]  Philipp Stelter,et al.  Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation , 2003, Nature.

[328]  C. Hill,et al.  The pore of activated 20S proteasomes has an ordered 7‐fold symmetric conformation , 2003, The EMBO journal.

[329]  R. Kölling,et al.  The yeast deubiquitinating enzyme Ubp16 is anchored to the outer mitochondrial membrane , 2003, FEBS letters.

[330]  C. Dargemont,et al.  The HECT Ubiquitin Ligase Rsp5p Is Required for Proper Nuclear Export of mRNA in Saccharomyces cerevisiae , 2003, Traffic.

[331]  Curt Wittenberg,et al.  Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. , 2003, Molecular biology of the cell.

[332]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[333]  D. Haines,et al.  Rsp5p Is Required for ER Bound Mga2p120 Polyubiquitination and Release of the Processed/Tethered Transactivator Mga2p90 , 2003, Current Biology.

[334]  C. Dargemont,et al.  Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23 , 2003, Nature Cell Biology.

[335]  M. Glickman,et al.  Proteasome Disassembly and Downregulation Is Correlated with Viability during Stationary Phase , 2003, Current Biology.

[336]  R. Deshaies,et al.  Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. , 2003, Molecular cell.

[337]  K. Gould,et al.  Structural insights into the U-box, a domain associated with multi-ubiquitination , 2003, Nature Structural Biology.

[338]  A. Haas,et al.  Protein Interactions within the N-end Rule Ubiquitin Ligation Pathway* , 2003, The Journal of Biological Chemistry.

[339]  M. Muratani,et al.  How the ubiquitin–proteasome system controls transcription , 2003, Nature Reviews Molecular Cell Biology.

[340]  Holly McDonough,et al.  CHIP: a link between the chaperone and proteasome systems , 2003, Cell stress & chaperones.

[341]  Yi Zhang,et al.  Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. , 2003, Molecular cell.

[342]  Li Chen,et al.  Proteolysis of a nucleotide excision repair protein by the 26S proteasome , 2002, Current Genetics.

[343]  T. Yao,et al.  A cryptic protease couples deubiquitination and degradation by the proteasome , 2002, Nature.

[344]  M. Glickman,et al.  MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function , 2002, BMC Biochemistry.

[345]  Kevin Struhl,et al.  Ubiquitination of Histone H2B by Rad6 Is Required for Efficient Dot1-mediated Methylation of Histone H3 Lysine 79* , 2002, The Journal of Biological Chemistry.

[346]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[347]  G. Dittmar,et al.  Proteasome subunit Rpn1 binds ubiquitin-like protein domains , 2002, Nature Cell Biology.

[348]  H. Ploegh,et al.  Multiple associated proteins regulate proteasome structure and function. , 2002, Molecular cell.

[349]  J Wade Harper,et al.  The anaphase-promoting complex: it's not just for mitosis any more. , 2002, Genes & development.

[350]  M. Hochstrasser,et al.  Analysis of Protein Ubiquitination , 2002, Current protocols in protein science.

[351]  H. Yokosawa,et al.  Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. , 2002, Biochemical and biophysical research communications.

[352]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[353]  L. Aravind,et al.  Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome , 2002, Science.

[354]  Mark Johnston,et al.  Methylation of Histone H3 by COMPASS Requires Ubiquitination of Histone H2B by Rad6* , 2002, The Journal of Biological Chemistry.

[355]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[356]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[357]  Zu-Wen Sun,et al.  Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast , 2002, Nature.

[358]  R. Piper,et al.  The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting , 2002, Nature Cell Biology.

[359]  Li Chen,et al.  Rad23 Promotes the Targeting of Proteolytic Substrates to the Proteasome , 2002, Molecular and Cellular Biology.

[360]  M. Goebl,et al.  Rub1p Processing by Yuh1p Is Required for Wild-Type Levels of Rub1p Conjugation to Cdc53p , 2002, Eukaryotic Cell.

[361]  Rebecca L Rich,et al.  Structure and functional interactions of the Tsg101 UEV domain , 2002, The EMBO journal.

[362]  H. Yokosawa,et al.  Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. , 2002, Biochemical and biophysical research communications.

[363]  Thomas Kodadek,et al.  Recruitment of a 19S Proteasome Subcomplex to an Activated Promoter , 2002, Science.

[364]  J. Zweier,et al.  A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal , 2002, Nature.

[365]  Hai Rao,et al.  Recognition of Specific Ubiquitin Conjugates Is Important for the Proteolytic Functions of the Ubiquitin-associated Domain Proteins Dsk2 and Rad23* , 2002, The Journal of Biological Chemistry.

[366]  Pier Paolo Di Fiore,et al.  A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins , 2002, Nature.

[367]  H. Erdjument-Bromage,et al.  A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage , 2002, Nature.

[368]  S. Jentsch,et al.  Role of the ubiquitin‐selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates , 2002, The EMBO journal.

[369]  Seth Sadis,et al.  Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[370]  R. Boelens,et al.  Identification of a ubiquitin–protein ligase subunit within the CCR4–NOT transcription repressor complex , 2002, The EMBO journal.

[371]  C. Taxis,et al.  Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48 , 2002, Nature Cell Biology.

[372]  H. Ulrich Degradation or Maintenance: Actions of the Ubiquitin System on Eukaryotic Chromatin , 2002, Eukaryotic Cell.

[373]  K. Fröhlich,et al.  AAA-ATPase p97/Cdc48p, a Cytosolic Chaperone Required for Endoplasmic Reticulum-Associated Protein Degradation , 2002, Molecular and Cellular Biology.

[374]  Joshua D. Schnell,et al.  Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis , 2002, Nature Cell Biology.

[375]  Tom A. Rapoport,et al.  The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol , 2001, Nature.

[376]  M. Hetzer,et al.  Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly , 2001, Nature Cell Biology.

[377]  R. Hampton,et al.  HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. , 2001, Molecular biology of the cell.

[378]  S. Jentsch,et al.  Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone , 2001, Cell.

[379]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[380]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[381]  J R Yates,et al.  Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. , 2001, Molecular cell.

[382]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[383]  A. Caudy,et al.  Regulation of Transcriptional Activation Domain Function by Ubiquitin , 2001, Science.

[384]  Jörg Urban,et al.  Sec61p‐independent degradation of the tail‐anchored ER membrane protein Ubc6p , 2001, The EMBO journal.

[385]  T. Kodadek,et al.  The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. , 2001, Molecular cell.

[386]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[387]  D. J. Clarke,et al.  UBA domains of DNA damage-inducible proteins interact with ubiquitin , 2001, Nature Structural Biology.

[388]  R. Young,et al.  Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. , 2001, Genes & development.

[389]  K. Nasmyth,et al.  Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability , 2001, Nature.

[390]  A. Varshavsky,et al.  RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[391]  A. Matouschek,et al.  ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. , 2001, Molecular cell.

[392]  K Nasmyth,et al.  Splitting the chromosome: cutting the ties that bind sister chromatids. , 2000, Novartis Foundation symposium.

[393]  M. J. Mallory,et al.  Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[394]  C. Hill,et al.  Structural basis for the activation of 20S proteasomes by 11S regulators , 2000, Nature.

[395]  R. Huber,et al.  A gated channel into the proteasome core particle , 2000, Nature Structural Biology.

[396]  K. Nasmyth,et al.  Disjunction of Homologous Chromosomes in Meiosis I Depends on Proteolytic Cleavage of the Meiotic Cohesin Rec8 by Separin , 2000, Cell.

[397]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. , 2000, Molecular biology of the cell.

[398]  J. Yates,et al.  Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. , 2000, Molecular biology of the cell.

[399]  A. Amerik,et al.  Analysis of the Deubiquitinating Enzymes of the Yeast Saccharomyces cerevisiae , 2000, Biological chemistry.

[400]  S. Jentsch,et al.  Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing , 2000, Cell.

[401]  Li Chen,et al.  The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly , 2000, Nature Cell Biology.

[402]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[403]  H. Yokosawa,et al.  Rapid isolation and characterization of the yeast proteasome regulatory complex. , 2000, Biochemical and biophysical research communications.

[404]  Andrew W. Murray,et al.  Phosphorylation by Cdc28 Activates the Cdc20-Dependent Activity of the Anaphase-Promoting Complex , 2000, The Journal of cell biology.

[405]  Andrew W. Murray,et al.  Cdc28 Activates Exit from Mitosis in Budding Yeast , 2000, The Journal of cell biology.

[406]  C. Guthrie,et al.  A putative ubiquitin ligase required for efficient mRNA export differentially affects hnRNP transport , 2000, Current Biology.

[407]  B. Futcher,et al.  Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis , 2000 .

[408]  M. Kirschner,et al.  The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. , 2000, Genes & development.

[409]  G. Fink,et al.  Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. , 2000, Molecular biology of the cell.

[410]  M. Osley,et al.  Rad6-dependent ubiquitination of histone H2B in yeast. , 2000, Science.

[411]  B. Futcher,et al.  Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[412]  C. Joazeiro,et al.  Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation , 2000, Nature Cell Biology.

[413]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[414]  J. Huibregtse,et al.  Rsp5 Ubiquitin-Protein Ligase Mediates DNA Damage-Induced Degradation of the Large Subunit of RNA Polymerase II in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[415]  A. Amerik,et al.  The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. , 1999, Molecular biology of the cell.

[416]  C. Hill,et al.  Structural basis for the specificity of ubiquitin C‐terminal hydrolases , 1999, The EMBO journal.

[417]  Friedrich Lottspeich,et al.  Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 , 1999, Nature.

[418]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[419]  E. Friedberg,et al.  The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. , 1999, Molecular cell.

[420]  P. Sorger,et al.  The Unstable F-box Protein p58-Ctf13 Forms the Structural Core of the CBF3 Kinetochore Complex , 1999, The Journal of cell biology.

[421]  B. André,et al.  NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. , 1999, Journal of cell science.

[422]  H. Feldmann,et al.  Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast , 1999, FEBS letters.

[423]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[424]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[425]  Y. Xiong,et al.  ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. , 1999, Molecular cell.

[426]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[427]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[428]  A. Shevchenko,et al.  Cdc 53 / cullin and the essential Hrt 1 RING – H 2 subunit of SCF define a ubiquitin ligase module that activates the E 2 enzyme Cdc 34 , 1999 .

[429]  K Nasmyth,et al.  Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. , 1998, Science.

[430]  M. Aebi,et al.  Degradation of Misfolded Endoplasmic Reticulum Glycoproteins in Saccharomyces cerevisiae Is Determined by a Specific Oligosaccharide Structure , 1998, The Journal of cell biology.

[431]  W. Baumeister,et al.  A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3 , 1998, Cell.

[432]  M. Hochstrasser,et al.  Degradation Signal Masking by Heterodimerization of MATα2 and MATa1 Blocks Their Mutual Destruction by the Ubiquitin-Proteasome Pathway , 1998, Cell.

[433]  Angelika Amon,et al.  The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis , 1998, Current Biology.

[434]  Kim Nasmyth,et al.  An ESP1/PDS1 Complex Regulates Loss of Sister Chromatid Cohesion at the Metaphase to Anaphase Transition in Yeast , 1998, Cell.

[435]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[436]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[437]  Erica S. Johnson,et al.  Ump1p Is Required for Proper Maturation of the 20S Proteasome and Becomes Its Substrate upon Completion of the Assembly , 1998, Cell.

[438]  Li Chen,et al.  Rad23 links DNA repair to the ubiquitin/proteasome pathway , 1998, Nature.

[439]  R. Plemper,et al.  Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. , 1998, Molecular biology of the cell.

[440]  T. Biederer,et al.  Role of Cue1p in ubiquitination and degradation at the ER surface. , 1997, Science.

[441]  G. Blobel,et al.  Ubc9p Is the Conjugating Enzyme for the Ubiquitin-like Protein Smt3p* , 1997, The Journal of Biological Chemistry.

[442]  S. Prinz,et al.  CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. , 1997, Science.

[443]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[444]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[445]  R. Haguenauer‐Tsapis,et al.  Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein , 1997, The EMBO journal.

[446]  L. Drury,et al.  The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast , 1997, The EMBO journal.

[447]  R. Plemper,et al.  Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation , 1997, Nature.

[448]  A. Amerik,et al.  In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome , 1997, The EMBO journal.

[449]  M. Hochstrasser,et al.  Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[450]  F. Supek,et al.  Negative Control of Heavy Metal Uptake by the Saccharomyces cerevisiae BSD2 Gene* , 1997, The Journal of Biological Chemistry.

[451]  R. Huber,et al.  Structure of 20S proteasome from yeast at 2.4Å resolution , 1997, Nature.

[452]  M. Kirschner,et al.  Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. , 1996, Genes & development.

[453]  J. Rine,et al.  Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. , 1996, Molecular biology of the cell.

[454]  M. Glickman,et al.  The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover , 1996, Molecular and cellular biology.

[455]  K. Nasmyth At the heart of the budding yeast cell cycle. , 1996, Trends in genetics : TIG.

[456]  D. Wolf,et al.  ER Degradation of a Misfolded Luminal Protein by the Cytosolic Ubiquitin-Proteasome Pathway , 1996, Science.

[457]  M. Hochstrasser,et al.  Autocatalytic Subunit Processing Couples Active Site Formation in the 20S Proteasome to Completion of Assembly , 1996, Cell.

[458]  A. Varshavsky,et al.  Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin‐mediated proteolysis in Saccharomyces cerevisiae. , 1996, The EMBO journal.

[459]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[460]  T. Biederer,et al.  Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin‐proteasome pathway. , 1996, The EMBO journal.

[461]  V. Guacci,et al.  Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s) , 1996, The Journal of cell biology.

[462]  M. Knop,et al.  Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. , 1996, The EMBO journal.

[463]  Howard Riezman,et al.  Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis , 1996, Cell.

[464]  B. André,et al.  NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin—protein ligase , 1995, Molecular microbiology.

[465]  Kim Nasmyth,et al.  Genes involved in sister chromatid separation are needed for b-type cyclin proteolysis in budding yeast , 1995, Cell.

[466]  M. Scheffner,et al.  A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[467]  A. Haas,et al.  A ubiquitin mutant with specific defects in DNA repair and multiubiquitination , 1995, Molecular and cellular biology.

[468]  C Mann,et al.  G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. , 1995, Genes & development.

[469]  Martin Scheffner,et al.  Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade , 1995, Nature.

[470]  Kim Nasmyth,et al.  The B-type cyclin kinase inhibitor p40 SIC1 controls the G1 to S transition in S. cerevisiae , 1994, Cell.

[471]  D. Ecker,et al.  Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant , 1994, Molecular and cellular biology.

[472]  R. Kölling,et al.  The ABC‐transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. , 1994, The EMBO journal.

[473]  C. Lawrence The RAD6 DNA repair pathway in Saccharomyces cerevisiae: What does it do, and how does it do it? , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[474]  M. Knop,et al.  Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. , 1993, European journal of biochemistry.

[475]  P. Sung,et al.  The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function , 1993, Molecular and cellular biology.

[476]  S. Jentsch,et al.  A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum , 1993, Nature.

[477]  S. Jentsch,et al.  Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor , 1993, Cell.

[478]  A. Varshavsky The N-end rule , 1992, Cell.

[479]  A. Varshavsky,et al.  The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[480]  A. Murray,et al.  Cyclin is degraded by the ubiquitin pathway , 1991, Nature.

[481]  S. Jentsch,et al.  UBA 1: an essential yeast gene encoding ubiquitin‐activating enzyme. , 1991, The EMBO journal.

[482]  A. Varshavsky,et al.  The recognition component of the N‐end rule pathway. , 1990, The EMBO journal.

[483]  Erica S. Johnson,et al.  Cis-trans recognition and subunit-specific degradation of short-lived proteins , 1990, Nature.

[484]  S. Jentsch,et al.  Ubiquitin‐conjugating enzymes UBC4 and UBC5 mediate selective degradation of short‐lived and abnormal proteins. , 1990, The EMBO journal.

[485]  Alexander Varshavsky,et al.  The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis , 1989, Nature.

[486]  M. Goebl,et al.  The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. , 1988, Science.

[487]  Alexander Varshavsky,et al.  The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme , 1987, Nature.

[488]  A. Varshavsky,et al.  The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses , 1987, Cell.

[489]  A. Varshavsky,et al.  In vivo half-life of a protein is a function of its amino-terminal residue. , 1986, Science.

[490]  I. A. Rose,et al.  Functional heterogeneity of ubiquitin carrier proteins. , 1985, Progress in clinical and biological research.

[491]  A. Varshavsky,et al.  The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein , 1984, Nature.

[492]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.