Compact single and nested tungsten-wire-array dynamics at 14–19MA and applications to inertial confinement fusiona)

Wire-array z pinches show promise as a high-power, efficient, reproducible, and low-cost x-ray source for high-yield indirect-drive inertial confinement fusion. Recently, rapid progress has been made in our understanding of the implosion dynamics of compact (20-mm-diam), high-current (11–19MA), single and nested wire arrays. As at lower currents (1–3MA), a single wire array (and both the outer and inner array of a nested system), show a variety of effects that arise from the initially discrete nature of the wires: a long wire ablation phase for 50%-80% of the current pulse width, an axial modulation of the ablation rate prior to array motion, a larger ablation rate for larger diameter wires, trailing mass, and trailing current. Compact nested wire arrays operate in current-transfer or transparent mode because the inner wires remain discrete during the outer array implosion, even for interwire gaps in the outer and inner arrays as small as 0.21mm. These array physics insights have led to nested arrays that...

[1]  J. Chittenden,et al.  Use of linear wire array Z pinches to examine plasma dynamics in high magnetic fields , 2004 .

[2]  C. Coverdale,et al.  Spectroscopic diagnosis of nested-wire-array dynamics and interpenetration at 7 MA. , 2004, Physical review letters.

[3]  W. Matthaeus,et al.  Phenomenology treatment of magnetohydrodynamic turbulence with nonequipartition and anisotropy , 2005 .

[4]  Gordon Andrew Chandler,et al.  Development and Characterization of a Z-Pinch Driven Hohlraum High-Yield Inertial Confinement Fusion Target Concept , 2001 .

[5]  R. G. Adams,et al.  Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum. , 2002, Physical review letters.

[6]  R. Bowers,et al.  Insights and applications of two-dimensional simulations to Z-pinch experiments , 1999 .

[7]  D. Sinars,et al.  Experiments measuring the initial energy deposition, expansion rates and morphology of exploding wires with about 1 kA/wire , 2001 .

[8]  J. Porter,et al.  Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches , 1997 .

[9]  D. Bliss,et al.  Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion. , 2005, Physical review letters.

[10]  N. Rostoker,et al.  Dense Z-pinches , 1989 .

[11]  C. Jennings,et al.  Nested wire array Z-pinch experiments operating in the current transfer mode , 2003 .

[12]  A. Velikovich,et al.  Fast commutation of high current in double wire array Z-pinch loads , 1997 .

[13]  S. Slutz,et al.  Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation. , 2003, Physical review letters.

[14]  Robert W. Clark,et al.  Titanium K-shell x-ray production from high velocity wire array implosions on the 20-MA Z accelerator , 1999 .

[15]  C. Jennings,et al.  Implosion dynamics of wire array Z-pinches: experiments at Imperial College , 2004 .

[16]  J. J. Ramirez,et al.  Theoretical z -pinch scaling relations for thermonuclear-fusion experiments. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Dangor,et al.  Azimuthal Structure and Global Instability in the Implosion Phase of Wire Array Z-Pinch Experiments , 1998 .

[18]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[19]  A. Velikovich,et al.  Perfectly conducting incompressible fluid model of a wire array implosion , 2002 .

[20]  Kenneth W. Struve,et al.  Enhancement of X-Ray Power from a Z Pinch Using Nested-Wire Arrays , 1998 .

[21]  G. R. Bennett,et al.  Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions. , 2002, Physical review letters.

[22]  G. R. Bennett,et al.  Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited) , 2004 .

[23]  D. Bliss,et al.  Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA. , 2004, Physical review letters.

[24]  A. Velikovich,et al.  CURRENT SWITCHING AND MASS INTERPENETRATION OFFER ENHANCED POWER FROM NESTED-ARRAY Z PINCHES , 1999 .

[25]  J. Chittenden,et al.  The different dynamical modes of nested wire array Z pinches , 2001 .

[26]  M. Cuneo,et al.  Steady-state radiation ablation in the wire-array Z pinch , 2007 .

[27]  J. Chittenden,et al.  Plasma Formation and Implosion Structure in Wire Array Z Pinches , 1999 .

[28]  M. Rosen The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial , 1999 .

[29]  R. G. Adams,et al.  Demonstration of radiation symmetry control for inertial confinement fusion in double Z-pinch hohlraums. , 2003, Physical review letters.

[30]  D. S. Bailey,et al.  High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .

[31]  Haines,et al.  Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches , 2000, Physical review letters.

[32]  K. H. Kwek,et al.  Effect of discrete wires on the implosion dynamics of wire array Z pinches , 2001 .

[33]  R. G. Adams,et al.  Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .

[34]  D. Bliss,et al.  Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories , 2004 .

[35]  R. G. Adams,et al.  Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z , 2003 .

[36]  S. Slutz,et al.  Amplitude reduction of nonuniformities induced by magnetic Rayleigh–Taylor instabilities in Z-pinch dynamic hohlraums , 2005 .

[37]  C. Jennings,et al.  X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches , 2004 .

[38]  J. Porter,et al.  Streaked laser shadowgraphy of tungsten wire array implosions on the Saturn generator , 1997 .

[39]  S. Slutz,et al.  Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z-Pinch Dynamic Hohlraums , 2004 .

[40]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[41]  Gordon Andrew Chandler,et al.  Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums , 2005 .

[42]  G. M. Oleinik,et al.  Dynamics of Heterogeneous Liners with Prolonged Plasma Creation , 2001 .

[43]  D. Bliss,et al.  Direct experimental evidence for current-transfer mode operation of nested tungsten wire arrays at 16-19 MA. , 2005, Physical review letters.

[44]  Haines,et al.  Two different modes of nested wire array Z-pinch implosions , 2000, Physical review letters.

[45]  G. Chandler,et al.  Radiation science using Z-pinch x rays , 2002 .

[46]  N. R. Pereira,et al.  X rays from z‐pinches on relativistic electron‐beam generators , 1988 .

[47]  Mosher,et al.  Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches. , 1996, Physical review letters.

[48]  G. Chandler,et al.  Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .

[49]  J. Kilkenny,et al.  Dynamic hohlraum radiation hydrodynamics , 2006 .

[50]  J. J. Ramirez,et al.  X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  R. Lemke,et al.  Wire array implosion characteristics from determination of load inductance on the Z pulsed-power accelerator , 2004 .

[52]  G. R. Bennett,et al.  Characteristics and scaling of tungsten-wire-array z -pinch implosion dynamics at 20 MA. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  M. Cuneo,et al.  Equilibrium flow structures and scaling of implosion trajectories in wire array Z pinches , 2004 .

[54]  R. G. Adams,et al.  Z-Beamlet: a multikilojoule, terawatt-class laser system. , 2005, Applied optics.

[55]  E. Yadlowsky,et al.  Evidence for precursor plasma formation resulting from heterogeneous current channels in wire array loads , 1996 .

[56]  L. P. Mix,et al.  Charge-state distribution and Doppler effect in an expanding photoionized plasma. , 2004, Physical review letters.

[57]  M. Cuneo,et al.  Measurements and simulations of the ablation stage of wire arrays with different initial wire sizes , 2006 .

[58]  A. Dangor,et al.  Snowplow-like behavior in the implosion phase of wire array Z pinches , 2002 .