Characterization of Brownian Gibbsian line ensembles

In this paper we show that a Brownian Gibbsian line ensemble is completely characterized by the finite-dimensional marginals of its top curve, i.e. the finite-dimensional sets of the its top curve form a separating class. A particular consequence of our result is that the Airy line ensemble is the unique Brownian Gibbsian line ensemble, whose top curve is the Airy$_2$ process.

[1]  R. Durrett Probability: Theory and Examples , 1993 .

[2]  A. Kirillov The Birth of a Random Matrix , 2006 .

[3]  D. Vere-Jones Markov Chains , 1972, Nature.

[4]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Ivan Corwin,et al.  Ergodicity of the Airy line ensemble , 2014, 1405.0464.

[7]  ERGODIC UNITARILY INVARIANT MEASURES ON THE SPACE OF INFINITE HERMITIAN MATRICES , 1996, math/9601215.

[8]  Nikos Zygouras,et al.  Variants of geometric RSK, geometric PNG and the multipoint distribution of the log-gamma polymer , 2015, 1509.03515.

[9]  B'alint Vir'ag,et al.  Bulk properties of the Airy line ensemble , 2018, 1812.00311.

[10]  Promit Ghosal,et al.  Stochastic PDE Limit of the Six Vertex Model , 2018, Communications in Mathematical Physics.

[11]  A. Hammond Modulus of continuity of polymer weight profiles in Brownian last passage percolation , 2017, The Annals of Probability.

[12]  K. Johansson,et al.  Eigenvalues of GUE Minors , 2006, math/0606760.

[13]  G. Giacomin,et al.  Stochastic Burgers and KPZ Equations from Particle Systems , 1997 .

[14]  Marc Yor,et al.  Brownian analogues of Burke's theorem , 2001 .

[15]  E. Dimitrov Six-vertex models and the GUE-corners process , 2016, 1610.06893.

[16]  Kellen Petersen August Real Analysis , 2009 .

[17]  Evgeni Dimitrov,et al.  Spatial Tightness at the Edge of Gibbsian Line Ensembles , 2021, Communications in Mathematical Physics.

[18]  Ivan Corwin,et al.  Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles , 2017, 1703.07180.

[19]  A. Hammond,et al.  KPZ line ensemble , 2013, 1312.2600.

[20]  J. Quastel,et al.  The One-Dimensional KPZ Equation and Its Universality Class , 2015, 1503.06185.

[21]  Manon Defosseux Orbit measures, random matrix theory and interlaced determinantal processes , 2008, 0810.1011.

[22]  Timo Seppalainen,et al.  Scaling for a one-dimensional directed polymer with boundary conditions , 2009, 0911.2446.

[23]  A. Borodin,et al.  Macdonald processes , 2011, Probability Theory and Related Fields.

[24]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[25]  J. Quastel,et al.  Tracy–Widom fluctuations for perturbations of the log-gamma polymer in intermediate disorder , 2016, The Annals of Applied Probability.

[26]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[27]  A. Borodin,et al.  Anisotropic (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}d growth and Gaussian limits of , 2016, Probability Theory and Related Fields.

[28]  N. O’Connell Directed polymers and the quantum Toda lattice , 2009, 0910.0069.

[29]  K. Khanin,et al.  Intermediate disorder regime for directed polymers in dimension 1+1. , 2010, Physical review letters.

[30]  Ivan Corwin,et al.  Tropical Combinatorics and Whittaker functions , 2011, 1110.3489.

[31]  A. Hammond,et al.  Brownian structure in the KPZ fixed point , 2019, Astérisque.

[32]  THE KARDAR-PARISI-ZHANG,et al.  The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .

[33]  Eric Nordenstam Interlaced particles in tilings and random matrices , 2009 .

[34]  P. Eichelsbacher,et al.  Ordered Random Walks , 2006, math/0610850.

[35]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[36]  A. Hammond,et al.  Brownian Gibbs property for Airy line ensembles , 2011, 1108.2291.

[37]  V. Gorin From Alternating Sign Matrices to the Gaussian Unitary Ensemble , 2013, 1306.6347.

[38]  A. Hammond A PATCHWORK QUILT SEWN FROM BROWNIAN FABRIC: REGULARITY OF POLYMER WEIGHT PROFILES IN BROWNIAN LAST PASSAGE PERCOLATION , 2017, Forum of Mathematics, Pi.

[39]  KMT coupling for random walk bridges , 2019, Probability Theory and Related Fields.

[40]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[41]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[42]  yuliy baryshnikov GUEs and queues , 1999 .

[43]  Editors , 2003 .

[44]  J. Quastel,et al.  Convergence of exclusion processes and the KPZ equation to the KPZ fixed point , 2022 .

[45]  B'alint Vir'ag,et al.  Uniform convergence to the Airy line ensemble , 2019, 1907.10160.

[46]  A. Hammond Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation , 2016, Memoirs of the American Mathematical Society.

[47]  E. Dimitrov Two-Point Convergence of the Stochastic Six-Vertex Model to the Airy Process , 2020, Communications in Mathematical Physics.

[48]  Harrison H. Zhou,et al.  Quantile coupling inequalities and their applications , 2012 .

[49]  A. Hammond Exponents governing the rarity of disjoint polymers in Brownian last passage percolation , 2017, Proceedings of the London Mathematical Society.

[50]  Confinement of Brownian polymers under geometric area tilts , 2018, Electronic Journal of Probability.

[51]  Tightness and Line Ensembles for Brownian Polymers Under Geometric Area Tilts , 2018, Statistical Mechanics of Classical and Disordered Systems.

[52]  Ivan Corwin The Kardar-Parisi-Zhang equation and universality class , 2011, 1106.1596.

[53]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[54]  A. Borodin,et al.  Height Fluctuations for the Stationary KPZ Equation , 2014, 1407.6977.

[55]  E. Dimitrov KPZ and Airy limits of Hall-Littlewood random plane partitions , 2016, 1602.00727.