Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams
暂无分享,去创建一个
[1] D. Bachrathy,et al. Bisection method in higher dimensions and the efficiency number , 2012 .
[2] Francisco J. Campa,et al. Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method , 2012 .
[3] O. B. Adetoro,et al. STABILITY LOBES PREDICTION FOR CORNER RADIUS END MILL USING NONLINEAR CUTTING FORCE COEFFICIENTS , 2012 .
[4] Alex Iglesias,et al. Prediction of multiple dominant chatter frequencies in milling processes , 2011 .
[5] Grégoire Peigné,et al. Simulation of low rigidity part machining applied to thin-walled structures , 2011 .
[6] Zoltan Dombovari,et al. The effect of serration on mechanics and stability of milling cutters , 2010 .
[7] Tamás Insperger,et al. Analysis of directional factors in milling: importance of multi-frequency calculation and of the inclusion of the effect of the helix angle , 2010 .
[8] R. E. Wilson,et al. Estimates of the bistable region in metal cutting , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] Peter Eberhard,et al. Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations , 2008 .
[10] Gábor Stépán,et al. On the higher-order semi-discretizations for periodic delayed systems , 2008 .
[11] Jokin Munoa,et al. Stability study of the milling process using an exponential force model in frequency domain , 2006 .
[12] Yusuf Altintas,et al. Multi frequency solution of chatter stability for low immersion milling , 2004 .
[13] Haitao Ma,et al. Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials , 2004 .
[14] B. Mann,et al. Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .
[15] Gábor Stépán,et al. Semi‐discretization method for delayed systems , 2002 .
[16] J. Hale. Theory of Functional Differential Equations , 1977 .
[17] H. E. Merritt. Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—1 , 1965 .
[18] András Szekrényes,et al. A special case of parametrically excited systems: Free vibration of delaminated composite beams , 2015 .
[19] Gábor Stépán,et al. Improved prediction of stability lobes with extended multi frequency solution , 2013 .
[20] Zoltan Dombovari,et al. On the Global Dynamics of Chatter in the Orthogonal Cutting Model , 2011 .
[21] Zoltan Dombovari,et al. Chatter stability of milling in frequency and discrete time domain , 2008 .
[22] D. Roose,et al. Continuation and Bifurcation Analysis of Delay Differential Equations , 2007 .
[23] Theory of Regenerative Machine Tool Chatter· , 2007 .
[24] T. Insperger,et al. Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .
[25] Gábor Stépán,et al. Stability of up-milling and down-milling, part 1: alternative analytical methods , 2003 .
[26] Jon R. Pratt,et al. The Stability of Low Radial Immersion Milling , 2000 .
[27] Yusuf Altintas,et al. Analytical Prediction of Stability Lobes in Milling , 1995 .
[28] Miklós Farkas,et al. Periodic Motions , 1994 .
[29] Ioannis Minis,et al. Analysis of Linear and Nonlinear Chatter in Milling , 1990 .
[30] O. Callandreau. Sur quelques applications des théories concernant les solutions particulières périodiques du problème des trois corps et l’intégration des équations différentielles linéaires à coefficients périodiques , 1891, Bulletin astronomique.