Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams

[1]  D. Bachrathy,et al.  Bisection method in higher dimensions and the efficiency number , 2012 .

[2]  Francisco J. Campa,et al.  Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method , 2012 .

[3]  O. B. Adetoro,et al.  STABILITY LOBES PREDICTION FOR CORNER RADIUS END MILL USING NONLINEAR CUTTING FORCE COEFFICIENTS , 2012 .

[4]  Alex Iglesias,et al.  Prediction of multiple dominant chatter frequencies in milling processes , 2011 .

[5]  Grégoire Peigné,et al.  Simulation of low rigidity part machining applied to thin-walled structures , 2011 .

[6]  Zoltan Dombovari,et al.  The effect of serration on mechanics and stability of milling cutters , 2010 .

[7]  Tamás Insperger,et al.  Analysis of directional factors in milling: importance of multi-frequency calculation and of the inclusion of the effect of the helix angle , 2010 .

[8]  R. E. Wilson,et al.  Estimates of the bistable region in metal cutting , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Peter Eberhard,et al.  Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations , 2008 .

[10]  Gábor Stépán,et al.  On the higher-order semi-discretizations for periodic delayed systems , 2008 .

[11]  Jokin Munoa,et al.  Stability study of the milling process using an exponential force model in frequency domain , 2006 .

[12]  Yusuf Altintas,et al.  Multi frequency solution of chatter stability for low immersion milling , 2004 .

[13]  Haitao Ma,et al.  Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials , 2004 .

[14]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[15]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[16]  J. Hale Theory of Functional Differential Equations , 1977 .

[17]  H. E. Merritt Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—1 , 1965 .

[18]  András Szekrényes,et al.  A special case of parametrically excited systems: Free vibration of delaminated composite beams , 2015 .

[19]  Gábor Stépán,et al.  Improved prediction of stability lobes with extended multi frequency solution , 2013 .

[20]  Zoltan Dombovari,et al.  On the Global Dynamics of Chatter in the Orthogonal Cutting Model , 2011 .

[21]  Zoltan Dombovari,et al.  Chatter stability of milling in frequency and discrete time domain , 2008 .

[22]  D. Roose,et al.  Continuation and Bifurcation Analysis of Delay Differential Equations , 2007 .

[23]  Theory of Regenerative Machine Tool Chatter· , 2007 .

[24]  T. Insperger,et al.  Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .

[25]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 1: alternative analytical methods , 2003 .

[26]  Jon R. Pratt,et al.  The Stability of Low Radial Immersion Milling , 2000 .

[27]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[28]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[29]  Ioannis Minis,et al.  Analysis of Linear and Nonlinear Chatter in Milling , 1990 .

[30]  O. Callandreau Sur quelques applications des théories concernant les solutions particulières périodiques du problème des trois corps et l’intégration des équations différentielles linéaires à coefficients périodiques , 1891, Bulletin astronomique.