Thermal imaging of sedimentary features on alluvial fans
暂无分享,去创建一个
[1] A. Kahle. Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .
[2] T. C. Blair. Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California , 1999 .
[3] T. C. Blair,et al. Alluvial Fan Processes and Forms , 1994 .
[4] W. Stefanov,et al. Use of Thermal Infrared Multispectral Scanner (TIMS) imagery to investigate upslope particle size controls on arid piedmont morphology , 2006 .
[5] T. C. Blair,et al. Recent Debris-Flow Processes and Resultant Form and Facies of the Dolomite Alluvial Fan, Owens Valley, California , 1998 .
[6] William E. Dietrich,et al. Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .
[7] C. B. Hunt,et al. Stratigraphy and structure, Death Valley, California , 1966 .
[8] T. C. Blair. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California , 2000 .
[9] E. Asphaug,et al. Catalogue of large alluvial fans in martian impact craters , 2008 .
[10] Terry Z. Martin,et al. Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .
[11] K. White,et al. The rate of iron oxide enrichment in arid zone alluvial fan soils, Tunisian southern atlas, measured by mineral magnetic techniques , 1997 .
[12] C. Denny. Alluvial fans in the Death Valley region, California and Nevada , 1965 .
[13] K. Watson. Geologic applications of thermal infrared images , 1975, Proceedings of the IEEE.
[14] A. Parsons,et al. Geomorphology of Desert Environments , 1994 .
[15] G. Middleton. Experimental studies related to problems of flysch sedimentation , 1970 .
[16] Kenneth S Edgett,et al. Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.
[17] C. Denny. Fans and pediments , 1967 .
[18] R. V. Fisher,et al. Features of coarse-grained, high-concentration fluids and their deposits , 1971 .
[19] R. Fergason,et al. Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data , 2009 .
[20] T. Titus,et al. MGS-TES thermal inertia study of the Arsia Mons Caldera , 2008 .
[21] W. Feldman,et al. Martian high latitude permafrost depth and surface cover thermal inertia distributions , 2008 .
[22] R. Kirk,et al. THEMIS high‐resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars , 2009 .
[23] Jeffrey Edward Moersch,et al. Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features , 2009 .
[24] K. Verosub,et al. Late Cenozoic history and styles of deformation along the southern Death Valley fault zone, California , 1988 .
[25] K. Watson,et al. A Diurnal Animation of Thermal Images from a Day–Night Pair , 2000 .
[26] M. Malin,et al. Sub-kilometer fans in Mojave Crater, Mars , 2008 .
[27] E. Blissenbach. Relation of surface angle distribution to particle size distribution on alluvial fans [Arizona] , 1952 .
[28] M. M. Osterloo,et al. Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.
[29] R. Fergason,et al. Formation and erosion of layered materials: Geologic and dust cycle history of eastern Arabia Terra, Mars , 2008 .
[30] M. F. Kane,et al. Structural geology and volcanism of Owens Valley region, California -- a geophysical study , 1964 .
[31] B. Burchfiel,et al. “PULL-APART” ORIGIN OF THE CENTRAL SEGMENT OF DEATH VALLEY, CALIFORNIA , 1966 .