First‐principles calculations on the four phases of BaTiO3

The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO3 crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange‐correlation density functional theory (DFT) functionals for four stable phases of BaTiO3. A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO3. The comparative phonon symmetry analysis in BaTiO3 four phases has been made basing on the site symmetry and irreducible representation indexes for the first time. © 2012 Wiley Periodicals, Inc.

[1]  F. Corà The performance of hybrid density functionals in solid state chemistry: the case of BaTiO3 , 2005 .

[2]  A. Kolesnikov,et al.  Large phonon band gap inSrTiO3and the vibrational signatures of ferroelectricity inATiO3perovskites: First-principles lattice dynamics and inelastic neutron scattering , 2008, 0803.1729.

[3]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[4]  Terutaro Nakamura Soft phonon in BaTiO3 , 1992 .

[5]  Liège,et al.  Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides , 2008, 0805.0753.

[6]  Freire,et al.  Lattice dynamics of crystals with tetragonal BaTiO3 structure. , 1988, Physical review. B, Condensed matter.

[7]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. , 2002, Acta crystallographica. Section B, Structural science.

[8]  Dejun Li,et al.  Ferroelectricity of nanocrystalline BaTiO3 ceramics by first principle calculation , 2010 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  Arthur P. Cracknell General introduction and tables of irreducible representations of space groups , 1979 .

[11]  R. Martin,et al.  Density-functional calculation of static and dynamic properties of GaAs , 1981 .

[12]  R. Evarestov Hybrid density functional theory LCAO calculations on phonons in Ba(Ti,Zr,Hf)3 , 2011 .

[13]  Cohen,et al.  Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented-plane-wave total-energy calculations. , 1990, Physical review. B, Condensed matter.

[14]  B. Wang,et al.  Precise Measurement of Thermal-Induced Refractive-Index Change in BaTiO(3) on the Basis of Anisotropic Self-Diffraction. , 2001, Applied optics.

[15]  H. L. Johnston,et al.  Structure of Barium Titanate at Elevated Temperatures , 1951 .

[16]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[17]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[18]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[19]  X. Gonze,et al.  First-principles characterization of the four phases of barium titanate , 1999 .

[20]  Rainer Waser,et al.  Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices , 2003 .

[21]  M. Veithen,et al.  Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Gunnar Borstel,et al.  Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study , 2004 .

[23]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[24]  Roberto Dovesi,et al.  The calculation of static polarizabilities of 1‐3D periodic compounds. the implementation in the crystal code , 2008, J. Comput. Chem..

[25]  J. Axe Apparent Ionic Charges and Vibrational Eigenmodes of BaTiO 3 and Other Perovskites , 1967 .

[26]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[27]  Heinz Schmitt,et al.  Elastic and piezoelectric coefficients of TSSG barium titanate single crystals , 1986 .

[28]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[29]  Y. Kawazoe,et al.  First-principles accurate total energy surfaces for polar structural distortions of BaTiO 3 , PbTiO 3 , and SrTiO 3 : Consequences for structural transition temperatures , 2010, 1007.1127.

[30]  A. Bell,et al.  Correlations between transition temperature, tolerance factor and cohesive energy in 2+:4+ perovskites , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Robert A. Evarestov,et al.  All‐electron LCAO calculations of the LiF crystal phonon spectrum: Influence of the basis set, the exchange‐correlation functional, and the supercell size , 2009, J. Comput. Chem..

[32]  G. Scuseria,et al.  Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory , 2007 .

[33]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[34]  William A. Goddard,et al.  The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric , 2006, Proceedings of the National Academy of Sciences.

[35]  D. A. Tenne,et al.  Absence of low-temperature phase transitions in epitaxial BaTiO 3 thin films , 2004 .

[36]  Robert A. Evarestov,et al.  Quantum chemistry of solids , 2007 .

[37]  G. Burns,et al.  Polarization in the cubic phase of BaTIO3 , 1982 .

[38]  W. Schmidt,et al.  Barium titanate ground- and excited-state properties from first-principles calculations , 2011 .

[39]  X. Gonze,et al.  Lattice dynamics and ferroelectric instability of barium titanate , 1997 .

[40]  Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study , 2010, 1008.4003.

[41]  Roberto Dovesi,et al.  Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. , 2008, The Journal of chemical physics.

[42]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[43]  R. Naik,et al.  High-pressure Raman studies of polycrystalline BaTiO 3 , 1998 .

[44]  Kevin E. Riley,et al.  Assessment of density functional theory methods for the computation of heats of formation and ionization potentials of systems containing third row transition metals. , 2007, The journal of physical chemistry. A.

[45]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[46]  K. Rabe,et al.  First-Principles Studies of Ferroelectric Oxides , 2007 .

[47]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[48]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[49]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[50]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[51]  M. Alfredsson,et al.  The Performance of Hybrid Density Functionals in Solid State Chemistry , 2005 .

[52]  M. Fontana,et al.  Underdamped soft phonon in orthorhombic BaTiO3 , 1990 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  J. Spanier,et al.  Ferroelectricity in chemical nanostructures: proximal probe characterization and the surface chemical environment , 2009, Journal of Materials Science.

[55]  Murray Hill,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[56]  U. Waghmare,et al.  First-principles model hamiltonians for ferroelectric phase transitions , 1992 .

[57]  Richard M. Martin,et al.  Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties , 1982 .

[58]  R. Evarestov,et al.  Site Symmetry in Crystals: Theory and Applications , 1993 .

[59]  Z. Dohcevic-Mitrovic,et al.  CHARACTERIZATION OF BARIUM TITANATE CERAMIC POWDERS BY RAMAN SPECTROSCOPY , 2009 .

[60]  Roberto Dovesi,et al.  Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. , 2008, The Journal of chemical physics.