A weighting subgradient algorithm for multiobjective optimization

We propose a weighting subgradient algorithm for solving multiobjective minimization problems on a nonempty closed convex subset of an Euclidean space. This method combines weighting technique and the classical projected subgradient method, using a divergent series steplength rule. Under the assumption of convexity, we show that the sequence generated by this method converges to a Pareto optimal point of the problem. Some numerical results are presented.

[1]  João X. da Cruz Neto,et al.  A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds , 2013, Journal of Optimization Theory and Applications.

[2]  C. Yalçin Kaya,et al.  A New Scalarization Technique to Approximate Pareto Fronts of Problems with Disconnected Feasible Sets , 2013, Journal of Optimization Theory and Applications.

[3]  Ellen H. Fukuda,et al.  Inexact projected gradient method for vector optimization , 2012, Computational Optimization and Applications.

[4]  José Yunier Bello Cruz,et al.  A Subgradient Method for Vector Optimization Problems , 2013, SIAM J. Optim..

[5]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[6]  João X. da Cruz Neto,et al.  A relaxed projection method for solving multiobjective optimization problems , 2017, Eur. J. Oper. Res..

[7]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[8]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[9]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[10]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[11]  Massimo Pappalardo,et al.  Multiobjective Optimization: A Brief Overview , 2008 .

[12]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[13]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[14]  Nelson Maculan,et al.  On the choice of parameters for the weighting method in vector optimization , 2007, Math. Program..

[15]  Panos M. Pardalos,et al.  Pareto set approximation by the method of adjustable weights and successive lexicographic goal programming , 2012, Optim. Lett..

[16]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .