Large scale micromagnetic calculations for finite and infinite 3Dferromagnetic systems using FFT

Abstract An algorithm for the solution of three-dimensional Micromagnetic problems is presented. This algorithm is based onthe evaluation of the stray field in the reciprocal space. This has been achieved by first Fourier transforming the adequate Magnetostatic field propagator and the magnetization configuration and then evaluating the product of both transforms. Thus, the stray field can be calculated as the reverse Fourier transform of this product. A very stable descent method taking into account all the physical aspects of the dynamics of a ferromagnetic system has also been developed for the study of both quasi-equilibrium transitions and large magnetization jumps (highly non-equilibrium processes). Finally, the described method has been checked comparing simulations to analytically solved problems (sphere, infinite cylinder) and to experimental observations (on cobalt submicronic magnets), obtaining in both cases a very good agreement.

[1]  A. Aharoni,et al.  Magnetization curling in a sphere , 1976 .

[2]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[3]  A. Aharoni Some Recent Developments in Micromagnetics at the Weizmann Institute of Science , 1959 .

[4]  Andrew H. Eschenfelder,et al.  Magnetic Bubble Technology , 1980 .

[5]  W. Brown Nucleation Fields of an Infinitely Long Square Ferromagnetic Prism , 1962 .

[6]  L. Néel Thermoremanent Magnetization of Fine Powders , 1953 .

[7]  Claude Chappert,et al.  Nanoscale Magnetic Domains in Mesoscopic Magnets , 1996, Science.

[8]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[9]  Jian-Gang Zhu,et al.  Magnetization reversal in CoCr perpendicular thin films , 1989 .

[10]  Ami E. Berkowitz,et al.  Magnetism and metallurgy , 1969 .

[11]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[12]  Y. Nakatani,et al.  Computer simulation of magnetization reversal in fine hexaferrite particles , 1990 .

[13]  G. A. Prinz,et al.  Hybrid Ferromagnetic-Semiconductor Structure , 1990, Science.

[14]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[15]  Yasutaro Uesaka,et al.  Direct Solution of the Landau-Lifshitz-Gilbert Equation for Micromagnetics , 1989 .

[16]  William Fuller Brown,et al.  Magnetostatic principles in Ferromagnetism , 1962 .

[17]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[18]  Effects of applied field inhomogeneities on the magnetization reversal of elongated /spl gamma/-Fe/sub 2/O/sub 3/ particles , 1989, International Magnetics Conference.

[19]  Y. Nakatani,et al.  Dynamical calculation of magnetization reversal in elongated particles , 1990 .

[20]  A. Hubert,et al.  Numerical micromagnetics in low-anisotropy materials , 1993 .

[21]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[22]  Thomas Schrefl,et al.  Phase distribution and computed magnetic properties of high-remanent composite magnets , 1995 .

[23]  C. Kittel Introduction to solid state physics , 1954 .

[24]  P. R. Kotiuga,et al.  Three‐dimensional micromagnetic simulations on the connection machine , 1990 .

[25]  Charles R. Martin,et al.  Template synthesis of polymeric and metal microtubules , 1991 .

[26]  A. Aharoni Complete Eigenvalue Spectrum for the Nucleation in a Ferromagnetic Prolate Spheroid , 1963 .

[27]  M. Schabes,et al.  Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles , 1991 .

[28]  M. Schabes,et al.  Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes , 1987 .

[29]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[30]  S. Chou,et al.  Fabrication of single‐domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density , 1994 .

[31]  William Fuller Brown,et al.  Criterion for Uniform Micromagnetization , 1957 .

[32]  P. Bloemen,et al.  Magnetic anisotropy of multilayers , 1991 .

[33]  S. Shtrikman,et al.  Magnetization Curve of the Infinite Cylinder , 1958 .

[34]  D. R. Fredkin,et al.  Numerical micromagnetics by the finite element method. II , 1988 .

[35]  A. E. Labonte,et al.  Two‐Dimensional Bloch‐Type Domain Walls in Ferromagnetic Films , 1969 .

[36]  Thomas Schrefl,et al.  Nucleation fields of hard magnetic particles in 2D and 3D micromagnetic calculations , 1994 .

[37]  R. Pease,et al.  Submicron patterning of thin cobalt films for magnetic storage , 1994 .

[38]  H. Bertram,et al.  Ferromagnetic switching in elongated γ‐Fe2O3 particles , 1988 .

[39]  Akira Tonomura,et al.  Applications of electron holography , 1987 .

[40]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[41]  W. Brown Some Magnetostatic and Micromagnetic Properties of the Infinite Rectangular Bar , 1964 .

[42]  E. H. Frei,et al.  Critical Size and Nucleation Field of Ideal Ferromagnetic Particles , 1957 .