Edge‐Optimized À‐Trous Wavelets for Local Contrast Enhancement with Robust Denoising

In this paper we extend the edge‐avoiding à‐trous wavelet transform for local contrast enhancement while avoiding common artifacts such as halos and gradient reversals. We show that this algorithm is a highly efficient and robust tool for image manipulation based on multi‐scale decompositions. It can achieve comparable results to previous high‐quality methods while being orders of magnitude faster and simpler to implement. Our method is much more robust than previously known fast methods by avoiding aliasing and ringing which is achieved by introducing a data‐adaptive edge weight. Operating on multi‐scale, our algorithm can directly include the BayesShrink method for denoising. For moderate noise levels our edge‐optimized technique consistently improves separation of signal and noise.

[1]  Erik Reinhard,et al.  Image-based material editing , 2005, SIGGRAPH '05.

[2]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  P. Dutilleux An Implementation of the “algorithme à trous” to Compute the Wavelet Transform , 1989 .

[6]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[7]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[8]  F. Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, ACM Trans. Graph..

[9]  Andrew Adams,et al.  Fast High‐Dimensional Filtering Using the Permutohedral Lattice , 2010, Comput. Graph. Forum.

[10]  Hendrik P. A. Lensch,et al.  Edge-avoiding À-Trous wavelet transform for fast global illumination filtering , 2010, HPG '10.

[11]  Szymon Rusinkiewicz,et al.  Multiscale shape and detail enhancement from multi-light image collections , 2007, ACM Trans. Graph..

[12]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  S. Mallat A wavelet tour of signal processing , 1998 .

[15]  F Murtagh Multiscale Transform Methods in Data Analysis , 2007 .

[16]  Erik Reinhard,et al.  Image-based material editing , 2005, SIGGRAPH '05.

[17]  Marc Levoy,et al.  Gaussian KD-trees for fast high-dimensional filtering , 2009, ACM Trans. Graph..

[18]  M. Kass,et al.  Smoothed local histogram filters , 2010, ACM Trans. Graph..

[19]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[20]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[21]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[22]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, SIGGRAPH 2008.

[23]  Raanan Fattal,et al.  Edge-avoiding wavelets and their applications , 2009, ACM Trans. Graph..

[24]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[25]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[26]  P. Burt Fast filter transform for image processing , 1981 .

[27]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[28]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[29]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[30]  Alexander Keller,et al.  ( t, m, s )-Nets and Maximized Minimum Distance , 2008 .