Review on research of room temperature magnetic refrigeration

Room temperature magnetic refrigeration is a new highly efficient and environmentally protective technology. Although it has not been maturely developed, it shows great applicable prosperity and seems to be a substitute for the traditional vapor compression technology. In this paper, the concept of magnetocaloric effect is explained. The development of the magnetic material, magnetic refrigeration cycles, magnetic field and the regenerator of room temperature magnetic refrigeration is introduced. Finally some typical room temperature magnetic refrigeration prototypes are reviewed.

[1]  Jincan Chen,et al.  The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle , 1998 .

[2]  J. H. Xiao,et al.  New method for analysis of active magnetic regenerator in magnetic refrigeration at room temperature , 1995 .

[3]  Lance D. Kirol,et al.  Rotary recuperative magnetic heat pump , 1988 .

[4]  A. Tishin Magnetocaloric effect in strong magnetic fields , 1990 .

[5]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[6]  R. Chahine,et al.  Thermodynamic investigations of optimum active magnetic regenerators , 1998 .

[7]  F. Hu,et al.  Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy , 2000 .

[8]  C. E. Reid,et al.  Selection of magnetic materials for an active magnetic regenerative refrigerator , 1994 .

[9]  Erwin A. Schroeder,et al.  Performance predictions of a magnetocaloric Refrigerator using a finite element model , 1990 .

[10]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[11]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[12]  Xavier Bohigas,et al.  Room-temperature magnetic refrigerator using permanent magnets , 2000 .

[13]  K. Gschneidner Metals, alloys and compounds-high purities do make a difference , 1993 .

[14]  H. Kato,et al.  Instrumentation for highly sensitive measurement of magnetocaloric effect : application to high Tc superconductors , 1991 .

[15]  Modeling the Active Magnetic Regenerator , 1992 .

[16]  R. Birringer,et al.  Magnetic properties of nanocrystalline Gd and W/Gd , 1997 .

[17]  J. R. Zhang,et al.  LARGE MAGNETIC ENTROPY CHANGE IN LA0.75CA0.25MNO3 , 1997 .

[18]  Wei Dai,et al.  New magnetic refrigeration materials for temperature range from 165 K to 235 K , 2000 .

[19]  R. McMichael,et al.  Magnetic nanocomposites for magnetic refrigeration , 1993 .

[20]  K. Gschneidner,et al.  Experimental device for studying the magnetocaloric effect in pulse magnetic fields , 1997 .

[21]  Zhengge Wang,et al.  Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B=Mn, Cr, Fe) , 2001 .

[22]  Richard Chahine,et al.  Noncontact thermoacoustic method to measure the magnetocaloric effect , 1995 .

[23]  C. Glorieux,et al.  Magnetic phase transition of gadolinium studied by acoustically detected magnetocaloric effect , 1996 .

[24]  Y. Hakuraku Thermodynamic simulation of a rotating Ericsson‐cycle magnetic refrigerator without a regenerator , 1987 .

[25]  W. Dai Regenerative balance in magnetic Ericsson refrigeration cycles , 1992 .

[26]  Jincan Chen,et al.  THE EFFECT OF FIELD-DEPENDENT HEAT-CAPACITY ON REGENERATION IN MAGNETIC ERICSSON CYCLES , 1991 .

[27]  A. Tishin,et al.  Magnetic entropy and phase transitions in Gd, Tb, Dy and Ho , 1996 .

[28]  Richard Chahine,et al.  Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .

[29]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[30]  C. Glorieux,et al.  New acoustic detection technique for a magnetocaloric effect , 1993 .

[31]  Hamilton,et al.  Low-temperature specific heat of La0.67Ba0.33MnO3 and La0.8Ca0.2MnO3. , 1996, Physical review. B, Condensed matter.

[32]  C. Shek,et al.  Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .

[33]  J. J. Hamilton,et al.  Low-temperature specific heat of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} and La{sub 0.8}Ca{sub 0.2}MnO{sub 3} , 1996 .

[34]  D. Jiles,et al.  Geometrical enhancements to permanent magnet flux sources: applications to energy efficient magnetocaloric refrigeration systems , 2000 .

[35]  K. Gschneidner,et al.  Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .

[36]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[37]  R. Levitin,et al.  Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields , 1997 .

[38]  Y. Du,et al.  Magnetic entropy change in La0.75Ca0.25-xSrxMnO3 perovskites , 1998 .

[39]  Youwei Du,et al.  Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides , 1997 .

[40]  Jincan Chen,et al.  The effect of field‐dependent heat capacity on the characteristics of the ferromagnetic Ericsson refrigeration cycle , 1992 .

[41]  M. Ibarra,et al.  Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compoundsGd5(SixGe1−x)4 , 2000 .

[42]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[43]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[44]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[45]  David Jiles,et al.  Design of permanent-magnet field source for rotary-magnetic refrigeration systems , 2002 .

[46]  Youwei Du,et al.  Magnetotransport and magnetocaloric properties of La0.55Er0.05Ca0.4MnO3 , 1998 .

[47]  Ning Zhang,et al.  Magnetocaloric properties of Na-substituted perovskite-type manganese oxides , 1998 .

[48]  P. Bénard,et al.  Comparison of magnetocaloric properties from magnetic and thermal measurements , 1997 .

[49]  F. Hu,et al.  Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .

[50]  A NOTE ON THE ERICSSON REFRIGERATION CYCLE OF PARAMAGNETIC SALT , 1989 .

[51]  F. H. Spedding,et al.  THE HEAT CAPACITY OF GADOLINIUM FROM 15 TO 355 K , 1954 .

[52]  K. Gschneidner,et al.  The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4–Gd5Ge4 system ☆ , 2002 .

[53]  X. Bohigas,et al.  Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3 , 2000 .

[54]  T. Hashimoto,et al.  Thermodynamic analysis of magnetically active regenerator from 30 to 70 K with a Brayton-like cycle , 1990 .

[55]  B. Shen,et al.  Application of high-energy Nd–Fe–B magnets in the magnetic refrigeration , 2000 .

[56]  Vitalij K. Pecharsky,et al.  Some common misconceptions concerning magnetic refrigerant materials , 2001 .

[57]  V. Pecharsky,et al.  The nonpareil R5(SixGe1−x)4 phases , 2000 .

[58]  Vitalij K. Pecharsky,et al.  MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .

[59]  David Jiles,et al.  Permanent magnet array for the magnetic refrigerator , 2002 .

[60]  K. Gschneidner,et al.  Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .

[61]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[62]  K. Gschneidner,et al.  Phase Relationships and Crystallography in the Pseudobinary System Gd5Si4-Gd5Ge4. , 1997 .

[63]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[64]  B. Dabrowski,et al.  Magnetocaloric effect in La1−xSrxMnO3 for x=0.13 and 0.16 , 2000 .

[65]  Vitalij K. Pecharsky,et al.  Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition , 2001 .

[66]  K. Gschneidner,et al.  A 3-350 K FAST AUTOMATIC SMALL SAMPLE CALORIMETER , 1997 .

[67]  M. Napoletano,et al.  Magnetocaloric properties of Gd/sub 7/Pd/sub 3/ and related intermetallic compounds , 2002 .

[68]  K. Gschneidner,et al.  Uncovering the Structure-Property Relationships in R5(SixGe4-x) Intermetallic Phases , 2002 .

[69]  R. Chahine,et al.  A sample translatory type insert for automated magnetocaloric effect measurements , 1997 .

[70]  C. Shek,et al.  Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .

[71]  P. Algarabel,et al.  Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .

[72]  H. A. Leupold Approaches to permanent magnet circuit design , 1993 .

[73]  J. Barclay Active and passive magnetic regenerators in gas/magnetic refrigerators , 1994 .

[74]  X. Bohigas,et al.  Magnetocaloric effect in La0.65Ca0.35Ti1 − xMnxO3 ceramic perovskites , 1999 .

[75]  K. Gschneidner,et al.  The giant magnetocaloric effect in Gd5(SixGe1-x)4 materials for magnetic refrigeration , 1998 .

[76]  Geoffrey F. Green,et al.  A Gadolinium-Terbium Active Regenerator , 1990 .

[77]  M. Salamon,et al.  Magnetocaloric effect and temperature coefficient of resistance of La2/3(Ca,Pb)1/3MnO3 , 2002 .

[78]  T. Tang,et al.  Magnetocaloric properties of Ag-substituted perovskite-type manganites , 2000 .

[79]  R. Chahine,et al.  Magnetic measurements: A powerful tool in magnetic refrigerator design , 1995 .

[80]  Vitalij K. Pecharsky,et al.  GIANT MAGNETOCALORIC EFFECT IN GD5(SI2GE2) , 1997 .

[81]  S. M. Benford,et al.  T‐S diagram for gadolinium near the Curie temperature , 1981 .

[82]  T. Hashimoto,et al.  Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants , 1981 .

[83]  J. A. Barclay,et al.  Conductively cooled Nb/sub 3/Sn magnet system for a magnetic refrigerator , 1991 .

[84]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[85]  X. Bohigas,et al.  Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials , 1996 .

[86]  R. Shull Magnetocaloric effect of ferromagnetic particles , 1993 .

[87]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[88]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[89]  Vitalij K. Pecharsky,et al.  Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys , 2001 .

[90]  J. Byers,et al.  Low-Temperature Specific Heat of La{sub 1-x}Sr{sub x}MnO{sub 3+{delta}} , 1997 .

[91]  Yu-heng Zhang,et al.  Large magnetic entropy change in the colossal magnetoresistance material La2/3Ca1/3MnO3 , 2000 .

[92]  X. Bohigas,et al.  Tunable magnetocaloric effect in ceramic perovskites , 1998 .

[93]  M. Sahashi,et al.  New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator , 1987 .

[94]  B. K. Ponomarev Magnetic properties of gadolinium in the region of paraprocess , 1986 .

[95]  Vitalij K. Pecharsky,et al.  The influence of magnetic field on the thermal properties of solids , 2000 .

[96]  S. Male,et al.  Magnetic measurements on coal , 1980 .

[97]  G. Brown Magnetic stirling cycles--A new application for magnetic materials , 1977 .

[98]  W. A. Steyert Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .

[99]  M. Kuz’min,et al.  Magnetocaloric effect Part 2: magnetocaloric effect in heavy rare earth metals and their alloys and application to magnetic refrigeration , 1993 .

[100]  THE CHARACTERISTICS OF POLYTROPIC MAGNETIC REFRIGERATION CYCLES , 1991 .

[101]  J. Barclay,et al.  Optimal Temperature -Entropy Curves for Magnetic Refrigeration , 1988 .