Review on research of room temperature magnetic refrigeration
暂无分享,去创建一个
Xiangzhao Meng | Bo Zhang | Bingfeng Yu | Zhenhua Chen | Bingfeng Yu | Xiangzhao Meng | Q. Gao | Beiyu Zhang | Zhenhua Chen | Q. Gao | X. Meng | Xiangzhao Meng
[1] Jincan Chen,et al. The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle , 1998 .
[2] J. H. Xiao,et al. New method for analysis of active magnetic regenerator in magnetic refrigeration at room temperature , 1995 .
[3] Lance D. Kirol,et al. Rotary recuperative magnetic heat pump , 1988 .
[4] A. Tishin. Magnetocaloric effect in strong magnetic fields , 1990 .
[5] W. Giauque. A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .
[6] R. Chahine,et al. Thermodynamic investigations of optimum active magnetic regenerators , 1998 .
[7] F. Hu,et al. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy , 2000 .
[8] C. E. Reid,et al. Selection of magnetic materials for an active magnetic regenerative refrigerator , 1994 .
[9] Erwin A. Schroeder,et al. Performance predictions of a magnetocaloric Refrigerator using a finite element model , 1990 .
[10] R. Chahine,et al. Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .
[11] K. Gschneidner,et al. Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .
[12] Xavier Bohigas,et al. Room-temperature magnetic refrigerator using permanent magnets , 2000 .
[13] K. Gschneidner. Metals, alloys and compounds-high purities do make a difference , 1993 .
[14] H. Kato,et al. Instrumentation for highly sensitive measurement of magnetocaloric effect : application to high Tc superconductors , 1991 .
[15] Modeling the Active Magnetic Regenerator , 1992 .
[16] R. Birringer,et al. Magnetic properties of nanocrystalline Gd and W/Gd , 1997 .
[17] J. R. Zhang,et al. LARGE MAGNETIC ENTROPY CHANGE IN LA0.75CA0.25MNO3 , 1997 .
[18] Wei Dai,et al. New magnetic refrigeration materials for temperature range from 165 K to 235 K , 2000 .
[19] R. McMichael,et al. Magnetic nanocomposites for magnetic refrigeration , 1993 .
[20] K. Gschneidner,et al. Experimental device for studying the magnetocaloric effect in pulse magnetic fields , 1997 .
[21] Zhengge Wang,et al. Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B=Mn, Cr, Fe) , 2001 .
[22] Richard Chahine,et al. Noncontact thermoacoustic method to measure the magnetocaloric effect , 1995 .
[23] C. Glorieux,et al. Magnetic phase transition of gadolinium studied by acoustically detected magnetocaloric effect , 1996 .
[24] Y. Hakuraku. Thermodynamic simulation of a rotating Ericsson‐cycle magnetic refrigerator without a regenerator , 1987 .
[25] W. Dai. Regenerative balance in magnetic Ericsson refrigeration cycles , 1992 .
[26] Jincan Chen,et al. THE EFFECT OF FIELD-DEPENDENT HEAT-CAPACITY ON REGENERATION IN MAGNETIC ERICSSON CYCLES , 1991 .
[27] A. Tishin,et al. Magnetic entropy and phase transitions in Gd, Tb, Dy and Ho , 1996 .
[28] Richard Chahine,et al. Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .
[29] K. Gschneidner,et al. MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .
[30] C. Glorieux,et al. New acoustic detection technique for a magnetocaloric effect , 1993 .
[31] Hamilton,et al. Low-temperature specific heat of La0.67Ba0.33MnO3 and La0.8Ca0.2MnO3. , 1996, Physical review. B, Condensed matter.
[32] C. Shek,et al. Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .
[33] J. J. Hamilton,et al. Low-temperature specific heat of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} and La{sub 0.8}Ca{sub 0.2}MnO{sub 3} , 1996 .
[34] D. Jiles,et al. Geometrical enhancements to permanent magnet flux sources: applications to energy efficient magnetocaloric refrigeration systems , 2000 .
[35] K. Gschneidner,et al. Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .
[36] H. Wada,et al. Giant magnetocaloric effect of MnAs1−xSbx , 2001 .
[37] R. Levitin,et al. Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields , 1997 .
[38] Y. Du,et al. Magnetic entropy change in La0.75Ca0.25-xSrxMnO3 perovskites , 1998 .
[39] Youwei Du,et al. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides , 1997 .
[40] Jincan Chen,et al. The effect of field‐dependent heat capacity on the characteristics of the ferromagnetic Ericsson refrigeration cycle , 1992 .
[41] M. Ibarra,et al. Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compoundsGd5(SixGe1−x)4 , 2000 .
[42] Vitalij K. Pecharsky,et al. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .
[43] F. Parker,et al. Magnetic cooling near Curie temperatures above 300 K , 1984 .
[44] H. Wada,et al. Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .
[45] David Jiles,et al. Design of permanent-magnet field source for rotary-magnetic refrigeration systems , 2002 .
[46] Youwei Du,et al. Magnetotransport and magnetocaloric properties of La0.55Er0.05Ca0.4MnO3 , 1998 .
[47] Ning Zhang,et al. Magnetocaloric properties of Na-substituted perovskite-type manganese oxides , 1998 .
[48] P. Bénard,et al. Comparison of magnetocaloric properties from magnetic and thermal measurements , 1997 .
[49] F. Hu,et al. Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .
[50] A NOTE ON THE ERICSSON REFRIGERATION CYCLE OF PARAMAGNETIC SALT , 1989 .
[51] F. H. Spedding,et al. THE HEAT CAPACITY OF GADOLINIUM FROM 15 TO 355 K , 1954 .
[52] K. Gschneidner,et al. The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4–Gd5Ge4 system ☆ , 2002 .
[53] X. Bohigas,et al. Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3 , 2000 .
[54] T. Hashimoto,et al. Thermodynamic analysis of magnetically active regenerator from 30 to 70 K with a Brayton-like cycle , 1990 .
[55] B. Shen,et al. Application of high-energy Nd–Fe–B magnets in the magnetic refrigeration , 2000 .
[56] Vitalij K. Pecharsky,et al. Some common misconceptions concerning magnetic refrigerant materials , 2001 .
[57] V. Pecharsky,et al. The nonpareil R5(SixGe1−x)4 phases , 2000 .
[58] Vitalij K. Pecharsky,et al. MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .
[59] David Jiles,et al. Permanent magnet array for the magnetic refrigerator , 2002 .
[60] K. Gschneidner,et al. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2) , 1997 .
[61] P. Debye. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .
[62] K. Gschneidner,et al. Phase Relationships and Crystallography in the Pseudobinary System Gd5Si4-Gd5Ge4. , 1997 .
[63] Karl A. Gschneidner,et al. Magnetocaloric effect and magnetic refrigeration , 1999 .
[64] B. Dabrowski,et al. Magnetocaloric effect in La1−xSrxMnO3 for x=0.13 and 0.16 , 2000 .
[65] Vitalij K. Pecharsky,et al. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition , 2001 .
[66] K. Gschneidner,et al. A 3-350 K FAST AUTOMATIC SMALL SAMPLE CALORIMETER , 1997 .
[67] M. Napoletano,et al. Magnetocaloric properties of Gd/sub 7/Pd/sub 3/ and related intermetallic compounds , 2002 .
[68] K. Gschneidner,et al. Uncovering the Structure-Property Relationships in R5(SixGe4-x) Intermetallic Phases , 2002 .
[69] R. Chahine,et al. A sample translatory type insert for automated magnetocaloric effect measurements , 1997 .
[70] C. Shek,et al. Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .
[71] P. Algarabel,et al. Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .
[72] H. A. Leupold. Approaches to permanent magnet circuit design , 1993 .
[73] J. Barclay. Active and passive magnetic regenerators in gas/magnetic refrigerators , 1994 .
[74] X. Bohigas,et al. Magnetocaloric effect in La0.65Ca0.35Ti1 − xMnxO3 ceramic perovskites , 1999 .
[75] K. Gschneidner,et al. The giant magnetocaloric effect in Gd5(SixGe1-x)4 materials for magnetic refrigeration , 1998 .
[76] Geoffrey F. Green,et al. A Gadolinium-Terbium Active Regenerator , 1990 .
[77] M. Salamon,et al. Magnetocaloric effect and temperature coefficient of resistance of La2/3(Ca,Pb)1/3MnO3 , 2002 .
[78] T. Tang,et al. Magnetocaloric properties of Ag-substituted perovskite-type manganites , 2000 .
[79] R. Chahine,et al. Magnetic measurements: A powerful tool in magnetic refrigerator design , 1995 .
[80] Vitalij K. Pecharsky,et al. GIANT MAGNETOCALORIC EFFECT IN GD5(SI2GE2) , 1997 .
[81] S. M. Benford,et al. T‐S diagram for gadolinium near the Curie temperature , 1981 .
[82] T. Hashimoto,et al. Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants , 1981 .
[83] J. A. Barclay,et al. Conductively cooled Nb/sub 3/Sn magnet system for a magnetic refrigerator , 1991 .
[84] G. V. Brown. Magnetic heat pumping near room temperature , 1976 .
[85] X. Bohigas,et al. Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials , 1996 .
[86] R. Shull. Magnetocaloric effect of ferromagnetic particles , 1993 .
[87] K. Gschneidner,et al. Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .
[88] Vitalij K. Pecharsky,et al. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .
[89] Vitalij K. Pecharsky,et al. Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys , 2001 .
[90] J. Byers,et al. Low-Temperature Specific Heat of La{sub 1-x}Sr{sub x}MnO{sub 3+{delta}} , 1997 .
[91] Yu-heng Zhang,et al. Large magnetic entropy change in the colossal magnetoresistance material La2/3Ca1/3MnO3 , 2000 .
[92] X. Bohigas,et al. Tunable magnetocaloric effect in ceramic perovskites , 1998 .
[93] M. Sahashi,et al. New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator , 1987 .
[94] B. K. Ponomarev. Magnetic properties of gadolinium in the region of paraprocess , 1986 .
[95] Vitalij K. Pecharsky,et al. The influence of magnetic field on the thermal properties of solids , 2000 .
[96] S. Male,et al. Magnetic measurements on coal , 1980 .
[97] G. Brown. Magnetic stirling cycles--A new application for magnetic materials , 1977 .
[98] W. A. Steyert. Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .
[99] M. Kuz’min,et al. Magnetocaloric effect Part 2: magnetocaloric effect in heavy rare earth metals and their alloys and application to magnetic refrigeration , 1993 .
[100] THE CHARACTERISTICS OF POLYTROPIC MAGNETIC REFRIGERATION CYCLES , 1991 .
[101] J. Barclay,et al. Optimal Temperature -Entropy Curves for Magnetic Refrigeration , 1988 .