Optical Nonlinearities and Carrier Transport in GaAs: EL2 at High Excitation Levels

Laser induced picosecond transient gratings are used to study carrier transport via free carrier and photorefractive nonlinearities in semi-insulating undoped GaAs bulk crystals. Carrier lifetime (τR = 1.5 ns), hole and ambipolar mobilities (μh = 410 cm2 V−1 s−1, μa = 760 cm2 V−1 s−1) are measured directly and an electron mobility equal to 5200 cm2 V−1 s−1 is calculated. The optical properties of highly excited GaAs reveal deep donor EL2 transformation and intracenter absorption under picosecond excitation. Rotation of the diffracted beam polarization is observed for the first time in orientation of the grating vector along the crystallographic axis [001]. This signal is attributed to a strain field at dislocations in LEC-grown GaAs wafers. La diffraction de la lumiere sur les reseaux de porteurs libres et photorefractif engendres par des impulsions picoseconde permet d'etudier les non-linearites optiques ainsi que le transport des porteurs libres dans le GaAs semi-isolant. Le temps de vie (τR = 1,5 ns), la mobilite des trous et la mobilite ambipolaire (μh = 410 cm2 V−1 s−1, μa = 760 cm2 V−1 s−1) sont mesurees directement; la valeur de la mobilite des electrons en est deduite (μn = 5200 cm2 V−1 s−1). Les proprietes optique du GaAs sous fortes excitations revelent les transformations du niveau profond EL2 et L'absorption intracentre sous excitation picoseconde. Une rotation de la polarisation du faisceau diffracte est observee pour la premiere fois avec un vecteur reseau oriente suivant L'axe cristallographique [001]. Ce signal est attribute a un champ de contrainte a longue distance autour des dislocations dans le GaAs fabrique par la technique LEC.

[1]  K. Jarašiūnas,et al.  Space charge field feed-back effect on carrier transport in photorefractive CdTe: V , 1992 .

[2]  B. Ga,et al.  Electronic aspects of the optical-absorption spectrum of the EL2 defect in GaAs. , 1992 .

[3]  G. Roosen,et al.  Nanosecond four-wave mixing in semi-insulating GaAs , 1992 .

[4]  Y. Ding,et al.  Transient Energy Transfer by ps‐Laser‐Induced Free‐Carrier and Photorefractive Gratings in CdTe at 1 μm , 1992 .

[5]  K. Jarašiūnas,et al.  Mapping of GaAs and Si wafers and ion-implanted layers by light-induced scattering and absorption of IR light , 1992 .

[6]  B. Pödör,et al.  Dislocation Bound States in Compound Semiconductors , 1991 .

[7]  A. Smirl,et al.  Hot-carrier enhancement of photorefractive space-charge fields in zinc-blende semiconductors. , 1991, Optics letters.

[8]  T. F. Boggess,et al.  Picosecond separation and measurement of coexisting photorefractive, bound-electronic, and free-carrier grating dynamics in GaAs. , 1991, Optics letters.

[9]  G. Pauliat,et al.  Photorefractive effect generated in sillenite crystals by picosecond pulses and comparison with the quasi-continuous regime , 1990 .

[10]  Arthur L. Smirl,et al.  Theory of high gain transient energy transfer in GaAs and Si , 1990 .

[11]  D. Ferré,et al.  Galvanomagnetic properties of dislocations in GaAs , 1990 .

[12]  Scheffler,et al.  Isolated arsenic-antisite defect in GaAs and the properties of EL2. , 1989, Physical review. B, Condensed matter.

[13]  Arthur L. Smirl,et al.  Picosecond pump‐probe technique to measure deep‐level, free‐carrier, and two photon cross sections in GaAs , 1989 .

[14]  M. Pugnet,et al.  Induced picosecond infrared absorption in GaAs , 1988 .

[15]  Samuelson,et al.  Identification of a second energy level of EL2 in n-type GaAs. , 1988, Physical review. B, Condensed matter.

[16]  G. Roosen,et al.  Photorefractive beam coupling in GaAs and InP generated by nanosecond light pulses , 1988 .

[17]  R. Thomas,et al.  Status of device-qualified GaAs substrate technology for GaAs integrated circuits , 1988, Proc. IEEE.

[18]  B. Dischler,et al.  Photo response of the EL2 absorption band and of the As+Ga ESR signal in GaAs , 1988 .

[19]  Arthur L. Smirl,et al.  Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 mu m , 1988 .

[20]  E. Garmire,et al.  Enhanced beam coupling modulation using the polarization properties of photorefractive GaAs , 1987 .

[21]  Kestutis Jarasiunas,et al.  The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon , 1986 .

[22]  D. Pohl,et al.  Laser-Induced Dynamic Gratings , 1986 .

[23]  D. Pohl,et al.  Production and Detection of Dynamic Gratings , 1986 .

[24]  J. S. Blakemore,et al.  Experimental requirements for quantitative mapping of midgap flaw concentration in semi‐insulating GaAs wafers by measurement of near‐infrared transmittance , 1985 .

[25]  M. Skowronski,et al.  Intracenter transitions in the dominant deep level (EL2) in GaAs , 1983 .

[26]  R. Jain,et al.  10 – Degenerate Four-Wave Mixing in Semiconductors* , 1983 .

[27]  D. Miller,et al.  Dynamic non-linear optical processes in semiconductors , 1981 .

[28]  G. Martin,et al.  Optical assessment of the main electron trap in bulk semi‐insulating GaAs , 1981 .

[29]  H. Gerritsen,et al.  Ambipolar diffusion measurements in semiconductors using nonlinear transient gratings , 1978 .

[30]  K. Jarašiūnas,et al.  Investigation of non‐equilibrium processes in semiconductors by the method of transient holograms , 1977 .

[31]  E. Garmire,et al.  Zinc-diffused two-dimensional optical waveguides in n-type GaAs. , 1976, Applied optics.

[32]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .