On the Characterization of Absentee-Voxels in a Spherical Surface and Volume of Revolution in $${\mathbb Z}^3$$Z3

We show that the construction of a digital sphere by circularly sweeping a digital semi-circle (generatrix) around its diameter results in the appearance of some holes (absentee-voxels) in its spherical surface of revolution. This incompleteness calls for a proper characterization of the absentee-voxels whose restoration in the surface of revolution can ensure the required completeness. In this paper, we present a characterization of the absentee-voxels using certain techniques of digital geometry and show that their count varies quadratically with the radius of the semi-circular generatrix. Next, we design an algorithm to fill up the absentee-voxels so as to generate a spherical surface of revolution, which is complete and realistic from the viewpoint of visual perception. We also show how the proposed technique for absentee-filling can be used to generate a variety of digital surfaces of revolution by choosing an arbitrary curve as the generatrix. We further show that covering a solid sphere by a set of complete spheres also results to an asymptotically larger count of absentees, which is cubic in the radius of the sphere. A complete characterization of the absentee-voxels that aids the subsequent generation of a solid digital sphere is also presented. Test results have been furnished to substantiate our theoretical findings.

[1]  Peer Stelldinger,et al.  On covering a digital disc with concentric circles in Z2 , 2013, Theor. Comput. Sci..

[2]  Yukiko Kenmochi,et al.  Digital Planar Surface Segmentation Using Local Geometric Patterns , 2008, DGCI.

[3]  Jayanarayanan Sitaraman,et al.  Wall distance search algorithm using voxelized marching spheres , 2013, J. Comput. Phys..

[4]  Reinhard Klette,et al.  Digital planarity - A review , 2007, Discret. Appl. Math..

[5]  Christophe Fiorio,et al.  Discrete circles: an arithmetical approach with non-constant thickness , 2006, Electronic Imaging.

[6]  Emico Okuno,et al.  Synthesis and characterization of phosphate glass microspheres for radiotherapy applications , 2008 .

[7]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[8]  Hiroshi Maehara On a sphere that passes through n lattice points , 2010, Eur. J. Comb..

[9]  Dömötör Pálvölgyi,et al.  Consistent Digital Line Segments , 2012, Discret. Comput. Geom..

[10]  Partha Bhowmick,et al.  Number-theoretic interpretation and construction of a digital circle , 2008, Discret. Appl. Math..

[11]  Lenny Fukshansky,et al.  On Integral Well-rounded Lattices in the Plane , 2012, Discret. Comput. Geom..

[12]  Marek Doros On some properties of the generation of discrete circular arcs on a square grid , 1984, Comput. Vis. Graph. Image Process..

[13]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[14]  Hajime Okamoto,et al.  Validity criteria of the discrete dipole approximation. , 2010, Applied optics.

[15]  Dong-Min Woo,et al.  Extraction of 3D Line Segment Using Digital Elevation Data , 2008, 2008 Congress on Image and Signal Processing.

[16]  Hod Lipson,et al.  Design and analysis of digital materials for physical 3D voxel printing , 2009 .

[17]  Bohumír Bastl,et al.  Simple and branched skins of systems of circles and convex shapes , 2015, Graph. Model..

[18]  Robert M. Haralick,et al.  A Measure for Circularity of Digital Figures , 1974, IEEE Trans. Syst. Man Cybern..

[19]  Chun Jinhee,et al.  Consistent Digital Rays , 2008 .

[20]  Eric Andres,et al.  Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties , 2013, Discret. Appl. Math..

[21]  Tristan Roussillon,et al.  Analytical Description of Digital Circles , 2011, DGCI.

[22]  Partha Bhowmick,et al.  On the Connectivity and Smoothness of Discrete Spherical Circles , 2015, IWCIA.

[23]  Yiu-Tong Chan,et al.  A simple approach for the estimation of circular arc center and its radius , 1989, Comput. Vis. Graph. Image Process..

[24]  Fernando Chamizo,et al.  The sphere problem and the L-functions , 2012 .

[25]  Masahiro Hiraoka,et al.  Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. , 2003, Biomaterials.

[26]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .

[27]  Á. Magyar On the distribution of lattice points on spheres and level surfaces of polynomials , 2007 .

[28]  J. Rossignac,et al.  Pearling: 3D interactive extraction of tubular structures from volumetric images , 2007 .

[29]  John A. Ewell Counting lattice points on spheres , 2000 .

[30]  O. M. Fomenko Distribution of Lattice Points over the Four-Dimensional Sphere , 2002 .

[31]  Valentin E. Brimkov,et al.  On the polyhedral complexity of the integer points in a hyperball , 2008, Theor. Comput. Sci..

[32]  Valentin E. Brimkov,et al.  Connected distance-based rasterization of objects in arbitrary dimension , 2011, Graph. Model..

[33]  Partha Bhowmick,et al.  Layer the sphere , 2015, The Visual Computer.

[34]  Zheng Liu,et al.  As-rigid-as-possible spherical parametrization , 2014, Graph. Model..

[35]  Partha Bhowmick,et al.  On the polyhedra of graceful spheres and circular geodesics , 2017, Discret. Appl. Math..

[36]  Zenon Kulpa,et al.  Algorithms for circular propagation in discrete images , 1983, Comput. Vis. Graph. Image Process..

[37]  Partha Bhowmick,et al.  On Finding Spherical Geodesic Paths and Circles in ℤ3 , 2014, DGCI.

[38]  Oleksiy S. Kim,et al.  Rapid Prototyping of Electrically Small Spherical Wire Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[39]  Joe K. Cochran,et al.  Ceramic hollow spheres and their applications , 1998 .

[40]  Eric Andres,et al.  Discrete circles, rings and spheres , 1994, Comput. Graph..

[41]  Yiu-Tong Chan,et al.  Cramer-Rao Lower Bounds for Estimation of a Circular Arc Center and Its Radius , 1995, CVGIP Graph. Model. Image Process..

[42]  Gautam Kumar,et al.  Wheel-throwing in digital space using number-theoretic approach , 2011, Int. J. Arts Technol..

[43]  Fernando Chamizo,et al.  Lattice points in rational ellipsoids , 2009 .

[44]  Partha Bhowmick,et al.  A Digital-Geometric Algorithm for Generating a Complete Spherical Surface in ℤ3 , 2014, ICAA.

[45]  W. G. Nowak,et al.  Lattice points in bodies of revolution , 2006 .

[46]  Z. Kulpa On the properties of discrete circles, rings, and disks , 1979 .

[47]  K. Tsang,et al.  Counting Lattice Points in The Sphere , 2000 .

[48]  Partha Bhowmick,et al.  On different topological classes of spherical geodesic paths and circles in Z3 , 2015, Theor. Comput. Sci..

[49]  Eric Andres,et al.  The Discrete Analytical Hyperspheres , 1997, IEEE Trans. Vis. Comput. Graph..

[50]  Claudio Montani,et al.  Spheres-to-voxels conversion , 1990 .

[51]  Partha Bhowmick,et al.  Determining Digital Circularity Using Integer Intervals , 2011, Journal of Mathematical Imaging and Vision.

[52]  Xin Chang,et al.  Preparation of oxide hollow spheres by colloidal carbon spheres , 2006 .

[53]  Valentin E. Brimkov,et al.  Graceful planes and lines , 2002, Theor. Comput. Sci..

[54]  Fernando Chamizo,et al.  Visible lattice points in the sphere , 2007 .

[55]  Akira Nakamura,et al.  Digital circles , 1984, Comput. Vis. Graph. Image Process..

[56]  Christophe Fiorio,et al.  Arithmetic Discrete Hyperspheres and Separatingness , 2006, DGCI.

[57]  D. R. Heath-Brown Lattice points in the sphere , 1999 .

[58]  Azriel Rosenfeld,et al.  Digital straightness - a review , 2004, Discret. Appl. Math..

[59]  Edward Roy Davies A hybrid sequential-parallel approach to accurate circle centre location , 1988, Pattern Recognit. Lett..

[60]  Ho-Lun Cheng,et al.  Quality mesh generation for molecular skin surfaces using restricted union of balls , 2005, VIS 05. IEEE Visualization, 2005..

[61]  Partha Bhowmick,et al.  From prima quadraginta octant to lattice sphere through primitive integer operations , 2016, Theor. Comput. Sci..

[62]  郭利民 Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route , 2009 .

[63]  Manfred Kühleitner On lattice points in rational ellipsoids: An omega estimate for the error term , 2000 .

[64]  Ho-Lun Cheng,et al.  Quality mesh generation for molecular skin surfaces using restricted union of balls , 2009, Comput. Geom..

[65]  M R Ghahramani,et al.  Production and quality control of radioactive yttrium microspheres for medical applications. , 2014, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[66]  Pong C. Yuen,et al.  A novel method for parameter estimation of digital arc , 1996, Pattern Recognit. Lett..

[67]  Benedek Nagy Characterization of digital circles in triangular grid , 2004, Pattern Recognit. Lett..

[68]  Peer Stelldinger,et al.  Image digitization and its influence on shape properties in finite dimensions , 2008, Ausgezeichnete Informatikdissertationen.

[69]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[70]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[71]  François de Vieilleville,et al.  Offset Approach to Defining 3D Digital Lines , 2008, ISVC.

[72]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[73]  Jean-Pierre Reveillès,et al.  A Generic Approach for n-Dimensional Digital Lines , 2006, DGCI.