Mechanisms of air‐sea CO2 flux variability in the equatorial Pacific and the North Atlantic

related to the El Nino/Southern Oscillation (ENSO) cycle in the equatorial Pacific. In contrast the air-sea O2 flux is controlled by two regions: the equatorial Pacific and North Atlantic. The model captures much of the interannual variability of the CO2 flux observed at Bermuda, with some correlation with the North Atlantic Oscillation (NAO) index. However, basin-scale air-sea CO2 flux anomalies are not correlated with the NAO due to a rapid neutralization of entrained DIC anomalies by biological uptake and export production in the subpolar gyre. CO2 flux variability estimates from our ocean model and the mean atmospheric inversion results of Bousquet et al. (2000) are in broad agreement in the equatorial Pacific, but not in the North Atlantic. This model suggests that the projection of air-sea flux anomalies onto the large-scale, mean air-sea flux pattern in atmospheric inversions may lead to an overestimate of the flux variability in the extra- tropics where the patterns of variability do not correspond to those of the mean flux. INDEX TERMS: 4215 Oceanography: General: Climate and interannual variability (3309); 4255 Oceanography: General: Numerical modeling; 4805 Oceanography: Biological and Chemical: Biogeochemical cycles (1615); 4806 Oceanography: Biological and Chemical: Carbon cycling; KEYWORDS: air-sea exchange, carbon flux, ocean modeling

[1]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[2]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[3]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[4]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[5]  Dimitris Menemenlis,et al.  Effects of the Indonesian Throughflow on the Pacific and Indian Oceans , 2002 .

[6]  M. Follows,et al.  Estimating the convective supply of nitrate and implied variability in export production over the North Atlantic , 2000 .

[7]  Corinne Le Quéré,et al.  Regional changes in carbon dioxide fluxes of land and oceans since 1980. , 2000, Science.

[8]  R. Dargaville,et al.  The relationship between tropical CO2 fluxes and the El Niño‐Southern Oscillation , 1999 .

[9]  David C. Lowe,et al.  Variability in the O2/N2 ratio of southern hemisphere air, 1991–1994: Implications for the carbon cycle , 1996 .

[10]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[11]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[12]  J. Campbell CHAPTER 44 – The Geochemical Ocean Sections Study — GEOSECS , 1983 .

[13]  E.,et al.  The Alkalinity and Total Carbon Dioxide Concentration in the World Oceans * , 2006 .

[14]  Thomas Kaminski,et al.  On aggregation errors in atmospheric transport inversions , 2001 .

[15]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[16]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[17]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[18]  Thomas M. Smith,et al.  Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation , 1994 .

[19]  M. Follows,et al.  The Ekman transfer of nutrients and maintenance of new production over the North Atlantic , 1998 .

[20]  Feldman,et al.  Biological and chemical response of the equatorial pacific ocean to the 1997-98 El Nino , 1999, Science.

[21]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[22]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[23]  Ian G. Enting,et al.  Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations* , 1999 .

[24]  M. Follows,et al.  Interannual variability of air‐sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2 , 2003 .

[25]  Martin Heimann,et al.  Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration , 1996, Nature.

[26]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[27]  Taro Takahashi,et al.  Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study , 1993 .

[28]  A. Manning Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: Tools for studying the global carbon cycle , 2001 .

[29]  W. Broecker,et al.  Gas exchange rates between air and sea , 1974 .

[30]  C. Wunsch,et al.  How well does a 1/4° global circulation model simulate large-scale oceanic observations? , 1996 .

[31]  A. Obata,et al.  Interannual variability of the sea-air exchange of CO2 from 1961 to 1998 simulated with a global ocean circulation-biogeochemistry model , 2003 .

[32]  D. Anderson The tropical ocean global atmosphere programme , 1995 .

[33]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[34]  M. Follows,et al.  Interannual variability of the air‐sea flux of oxygen in the North Atlantic , 2000 .

[35]  N. Bates Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre , 2001 .

[36]  Franco Molteni,et al.  Toward a dynamical understanding of planetary-scale flow regimes. , 1993 .

[37]  M. Follows,et al.  Interannual variability of phytoplankton abundances in the North Atlantic , 2001 .

[38]  Jacqueline Boutin,et al.  Seasonal and interannual variability of CO2 in the equatorial Pacific , 2002 .

[39]  Antonio J. Busalacchi,et al.  The Tropical Ocean‐Global Atmosphere observing system: A decade of progress , 1998 .

[40]  J. Hurrell Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation , 1995, Science.

[41]  David M. Karl,et al.  The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation , 1996 .

[42]  Corinne Le Quéré,et al.  Propagation of climatic events on ocean stratification, marine biology, and CO2: Case studies over the 1979–1999 period , 2003 .

[43]  G. McKinley Interannual variability of air-sea fluxes of carbon dioxide and oxygen , 2002 .

[44]  C. D. Keeling,et al.  Interannual Variability in the North Atlantic Ocean Carbon Sink , 2002, Science.

[45]  G. Madec,et al.  Interannual variability of the oceanic sink of CO2 from 1979 through 1997 , 2000 .

[46]  Jacqueline Boutin,et al.  Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2‐SST relationships , 2003 .

[47]  E. Maier‐Reimer,et al.  El Niño‐Southern Oscillation related fluctuations of the marine carbon cycle , 1994 .

[48]  R. Feely,et al.  Satellite sea surface temperature: a powerful tool for interpreting in situ pCO2 measurements in the equatorial Pacific Ocean , 1999 .

[49]  M. Follows,et al.  The solubility pump of carbon in the subtropical gyre of the North Atlantic , 1996 .

[50]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[51]  R. Healy,et al.  Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths , 2000 .

[52]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[53]  Robert R. Dickson,et al.  Long-term coordinated changes in the convective activity of the North Atlantic , 1996 .

[54]  David M. Karl,et al.  Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean , 2003, Nature.