Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter

This paper reports results of comparison of three digital fringe signal processing methods implemented in the same free-fall absolute gravimeter. A two-sample zero-crossing method, a windowed second-difference method and a method of non-linear least-squares adjustment on the undersampled fringe signal are compared in numerical simulations, hardware tests and actual measurements with the MPG-2 absolute gravimeter, developed at the Max Planck Institute for the Science of Light, Germany. The two-sample zero-crossing method realizes data location schemes that are both equally spaced in distance and equally spaced in time (EST) along the free-fall trajectory. The windowed second-difference method and the method of non-linear least-squares adjustment with complex heterodyne demodulation operate with the EST data. Results of the comparison verify an agreement of the three methods within one part in 109 of the measured gravity value, provided a common data location scheme is considered.

[1]  L. Timmen Precise definition of the effective measurement height of free-fall absolute gravimeters , 2003 .

[2]  K. Kuroda,et al.  Correction to Interferometric Measurements of Absolute Gravity Arising from the Finite Speed of Light , 1991 .

[3]  V. D. Nagornyi A new approach to absolute gravimeter analysis , 1995 .

[4]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[5]  Giovanni Mana,et al.  Propagation of error analysis in a total least-squares estimator in absolute gravimetry , 2002 .

[6]  Giulio Barbato,et al.  A method to estimate the time–position coordinates of a free-falling test-mass in absolute gravimetry , 2005 .

[7]  T. Niebauer,et al.  New absolute gravity instruments for physics and geophysics , 1987 .

[8]  L. J. Wang,et al.  Development of new free-fall absolute gravimeters , 2009 .

[9]  L. Robertsson Absolute gravimetry in a shifted Legendre basis , 2005 .

[10]  S. Tsuruta,et al.  Possible large systematic error source in absolute gravimetry , 1996 .

[11]  Hua Hu,et al.  Improvements of the MPG-2 transportable absolute ballistic gravimeter , 2010 .

[12]  William E. Carter,et al.  Improvements in absolute gravity observations , 1991 .

[13]  Francesca Pennecchi,et al.  Reconstruction of the free-falling body trajectory in a rise-and-fall absolute ballistic gravimeter , 2008 .

[14]  Francesca Pennecchi,et al.  The expression of uncertainty in non-linear parameter estimation , 2006 .

[15]  Giovanni Mana,et al.  Accuracy assessment of data analysis in absolute gravimetry , 2003, IEEE Trans. Instrum. Meas..

[16]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[17]  Complex heterodyne for undersampled chirped sinusoidal signals. , 2006, Applied optics.

[18]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[19]  O. Francis,et al.  Set standard deviation, repeatability and offset of absolute gravimeter A10-008 , 2006 .

[20]  J. Faller,et al.  A Portable Apparatus for Absolute Measurements of the Earth's Gravity , 1982 .

[21]  Timothy M. Niebauer,et al.  The Effective Measurement Height of Free-fall Absolute Gravimeters , 1989 .

[22]  R. Hipkin,et al.  Vertical gradient and datum height corrections to absolute gravimeter data and the effect of structured fringe residuals. , 1995 .

[24]  L. J. Wang,et al.  First Experience with the Transportable MPG-2 Absolute Gravimeter , 2010 .

[25]  James E. Faller,et al.  Thirty Years of Progress in Absolute Gravimetry: A Scientific Capability Implemented by Technological Advances , 2002 .

[26]  T. Tsubokawa A Fringe Signal Processing Method for an Absolute Gravimeter , 1984 .

[27]  Tsuneya Tsubokawa,et al.  New method of digital fringe signal processing in an absolute gravimeter , 1999, IEEE Trans. Instrum. Meas..