Defining the Teratoma as a Model for Multi-lineage Human Development

[1]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[2]  R. Tibshirani,et al.  Lasso and Elastic-Net Regularized Generalized Linear Models [R package glmnet version 4.0-2] , 2020 .

[3]  A. van Oudenaarden,et al.  An in vitro model of early anteroposterior organization during human development , 2020, Nature.

[4]  L1 syndrome , 2020, Definitions.

[5]  David van Dijk,et al.  Uncovering axes of variation among single-cell cancer specimens , 2020, Nature Methods.

[6]  T. Lassmann,et al.  Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows , 2020, Genome Biology.

[7]  Fenglin Liu,et al.  Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data , 2019, Genome Biology.

[8]  M. Gerstein,et al.  A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation , 2019, Neuron.

[9]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[10]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[11]  Sean K. Simmons,et al.  Individual brain organoids reproducibly form cell diversity of the human cerebral cortex , 2019, Nature.

[12]  Samuel Demharter,et al.  Joint analysis of heterogeneous single-cell RNA-seq dataset collections , 2019, Nature Methods.

[13]  Samantha A. Morris,et al.  CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics , 2019, Genome Biology.

[14]  Berthold Göttgens,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[15]  Simon Cockell,et al.  Deconstructing Retinal Organoids: Single Cell RNA‐Seq Reveals the Cellular Components of Human Pluripotent Stem Cell‐Derived Retina , 2019, Stem cells.

[16]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[17]  Melissa C Skala,et al.  Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines , 2019, Development.

[18]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[19]  A. Oshlack,et al.  Evaluation of variability in human kidney organoids , 2018, Nature Methods.

[20]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[21]  Madeline A. Lancaster,et al.  Exploring landscapes of brain morphogenesis with organoids , 2018, Development.

[22]  Kun Zhang,et al.  Mapping Cellular Reprogramming via Pooled Overexpression Screens with Paired Fitness and Single-Cell RNA-Sequencing Readout. , 2018, Cell systems.

[23]  A. Schambach,et al.  Human Teratoma-Derived Hematopoiesis Is a Highly Polyclonal Process Supported by Human Umbilical Vein Endothelial Cells , 2018, Stem cell reports.

[24]  D. Zack,et al.  Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells , 2018, Scientific Reports.

[25]  Martin J. Aryee,et al.  In vivo CRISPR editing with no detectable genome-wide off-target mutations , 2018, Nature.

[26]  Runx1-Stat3 signaling regulates the epithelial stem cells in continuously growing incisors , 2018, Scientific Reports.

[27]  M. Kyba,et al.  Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. , 2018, Cell stem cell.

[28]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[29]  Pablo Tamayo,et al.  Visualizing and interpreting single-cell gene expression datasets with Similarity Weighted Nonnegative Embedding , 2018, bioRxiv.

[30]  Allon M. Klein,et al.  Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo , 2018, Science.

[31]  A. Regev,et al.  Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.

[32]  P. Madeddu,et al.  Concise Review: The Regenerative Journey of Pericytes Toward Clinical Translation , 2018, Stem cells.

[33]  Lu Wen,et al.  Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing , 2018, Nature Cell Biology.

[34]  A. Torkamani,et al.  Diverse reprogramming codes for neuronal identity , 2018, Nature.

[35]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[36]  J. Roux,et al.  Rett syndrome from bench to bedside: recent advances , 2018, F1000Research.

[37]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[38]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[39]  Jie Qiao,et al.  A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex , 2018, Nature.

[40]  Nazish Sayed,et al.  Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond , 2018, Development.

[41]  Martin J. Aryee,et al.  In vivo CRISPR-Cas gene editing with no detectable genome-wide off-target mutations , 2018, bioRxiv.

[42]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[43]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[44]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[45]  P. Arlotta,et al.  Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. , 2018, Current topics in developmental biology.

[46]  R. Bloomquist,et al.  A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors , 2018, Nature Communications.

[47]  Intawat Nookaew,et al.  Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons , 2017, Genome research.

[48]  L. Vallier,et al.  Variability of human pluripotent stem cell lines. , 2017, Current opinion in genetics & development.

[49]  Claudia C. Wehrspaun,et al.  Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer Immunotherapy , 2017, Cell.

[50]  A. Wilkinson,et al.  In Vivo Generation of Engraftable Murine Hematopoietic Stem Cells by Gfi1b, c-Fos, and Gata2 Overexpression within Teratoma , 2017, Stem cell reports.

[51]  T. Ohtsuka,et al.  Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development , 2017, Development.

[52]  Stem cells: Organoid variability examined , 2017, Nature Methods.

[53]  Hirohide Saito,et al.  Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch , 2017, Nucleic acids research.

[54]  Daniel R. Berger,et al.  Cell diversity and network dynamics in photosensitive human brain organoids , 2017, Nature.

[55]  Hans Clevers,et al.  Disease Modeling in Stem Cell-Derived 3D Organoid Systems. , 2017, Trends in molecular medicine.

[56]  V. Menon,et al.  Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states , 2017, eLife.

[57]  A. Martinez-Arias,et al.  The hope and the hype of organoid research , 2017, Development.

[58]  Richard A. Muscat,et al.  Scaling single cell transcriptomics through split pool barcoding , 2017, bioRxiv.

[59]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[60]  Rebecca D Hodge,et al.  A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. , 2017, Cell stem cell.

[61]  L. Mureşan,et al.  Early born neurons are abnormally positioned in the doublecortin knockout hippocampus , 2016, Human molecular genetics.

[62]  André F. Rendeiro,et al.  Pooled CRISPR screening with single-cell transcriptome read-out , 2017, Nature Methods.

[63]  Lei S. Qi,et al.  Repurposing CRISPR System for Transcriptional Activation. , 2017, Advances in experimental medicine and biology.

[64]  J. Spence,et al.  hPSC-derived lung and intestinal organoids as models of human fetal tissue. , 2016, Developmental biology.

[65]  M. Kay,et al.  Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation , 2016, Experimental Neurology.

[66]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[67]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[68]  Kathleen F. Kerr,et al.  CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease , 2016, Alzheimer's & Dementia.

[69]  Charles A. Gersbach,et al.  Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. , 2016, Cell stem cell.

[70]  A. Tonevitsky,et al.  L1CAM: Cell adhesion and more. , 2016, Progress in histochemistry and cytochemistry.

[71]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[72]  Matthew C. Canver,et al.  Analyzing CRISPR genome-editing experiments with CRISPResso , 2016, Nature Biotechnology.

[73]  Hans Clevers,et al.  Modeling Development and Disease with Organoids , 2016, Cell.

[74]  Gabriela Alexe,et al.  Characterizing genomic alterations in cancer by complementary functional associations , 2016, Nature Biotechnology.

[75]  K. Iwata,et al.  Regulation of transient receptor potential vanilloid 1 expression in trigeminal ganglion neurons via methyl-CpG binding protein 2 signaling contributes tongue heat sensitivity and inflammatory hyperalgesia in mice , 2016, Molecular pain.

[76]  R. Shivdasani,et al.  Stomach development, stem cells and disease , 2016, Development.

[77]  Jeffrey M Karp,et al.  Engineering Stem Cell Organoids. , 2016, Cell stem cell.

[78]  A. Ben-Ze'ev,et al.  Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis , 2015, Oncotarget.

[79]  Bon-Kyoung Koo,et al.  Modeling mouse and human development using organoid cultures , 2015, Development.

[80]  Y. Groner,et al.  Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration , 2015, PLoS genetics.

[81]  N. Benvenisty,et al.  TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas , 2015, Stem cell reports.

[82]  Shinya Yamanaka,et al.  Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. , 2015, Cell stem cell.

[83]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[84]  D. Su,et al.  An updated role of microRNA-124 in central nervous system disorders: a review , 2015, Front. Cell. Neurosci..

[85]  Hayley E. Francies,et al.  Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients , 2015, Cell.

[86]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[87]  Richard L. Mort,et al.  The melanocyte lineage in development and disease , 2015, Development.

[88]  M. Spector,et al.  Organoid Models of Human and Mouse Ductal Pancreatic Cancer , 2015, Cell.

[89]  Hans Clevers,et al.  In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. , 2015, Gastroenterology.

[90]  A. van Oudenaarden,et al.  Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2 , 2014, Nature Communications.

[91]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[92]  Hans Clevers,et al.  Organoid Cultures Derived from Patients with Advanced Prostate Cancer , 2014, Cell.

[93]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[94]  M. Hill,et al.  The emerging roles of TCF4 in disease and development. , 2014, Trends in molecular medicine.

[95]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[96]  L. Pozzo-Miller,et al.  BDNF deregulation in Rett syndrome , 2014, Neuropharmacology.

[97]  A. Fischer,et al.  TTC7A mutations disrupt intestinal epithelial apicobasal polarity. , 2014, The Journal of clinical investigation.

[98]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[99]  A. Percy,et al.  Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. , 2013, Current clinical pharmacology.

[100]  L. Studer,et al.  Build-a-brain. , 2013, Cell stem cell.

[101]  M. Forrest,et al.  Knockdown of Human TCF4 Affects Multiple Signaling Pathways Involved in Cell Survival, Epithelial to Mesenchymal Transition and Neuronal Differentiation , 2013, PLoS ONE.

[102]  H. Nakauchi,et al.  Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[103]  Hans Clevers,et al.  A functional CFTR assay using primary cystic fibrosis intestinal organoids , 2013, Nature Medicine.

[104]  Richard S. Zemel,et al.  Stochastic k-Neighborhood Selection for Supervised and Unsupervised Learning , 2013, ICML.

[105]  T. Tumbar,et al.  New insights into the role of Runx1 in epithelial stem cell biology and pathology , 2013, Journal of cellular biochemistry.

[106]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[107]  D. Neuberg,et al.  In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. , 2013, Blood.

[108]  S. Friedman,et al.  Vascular Injury Triggers Krüppel-Like Factor 6 Mobilization and Cooperation With Specificity Protein 1 to Promote Endothelial Activation Through Upregulation of the Activin Receptor-Like Kinase 1 Gene , 2013, Circulation research.

[109]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[110]  G. Meijer,et al.  Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract , 2012, Cancer science.

[111]  Tao He,et al.  Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms , 2011, Cell Research.

[112]  J. Ignatius,et al.  Pitt-Hopkins Syndrome , 2011, Molecular Syndromology.

[113]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[114]  Hans Clevers,et al.  Isolation and in vitro expansion of human colonic stem cells , 2011, Nature Medicine.

[115]  Isabelle S. Peter,et al.  Transphyletic conservation of developmental regulatory state in animal evolution , 2011, Proceedings of the National Academy of Sciences.

[116]  F. Guillemot,et al.  A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. , 2011, Genes & development.

[117]  Eric H. Davidson,et al.  Evolution of Gene Regulatory Networks Controlling Body Plan Development , 2011, Cell.

[118]  C. Schaniel,et al.  Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells , 2011, Nature Biotechnology.

[119]  L. Peshkin,et al.  Remodeling of the Metabolome during Early Frog Development , 2011, PloS one.

[120]  H. Abdi,et al.  Principal component analysis , 2010 .

[121]  Hans-Peter Kriegel,et al.  Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? , 2010, SSDBM.

[122]  Liang-Hu Qu,et al.  MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. , 2009, Biochemical and biophysical research communications.

[123]  Hongwei Zhang,et al.  Characterization of SoxB2 and SoxC genes in amphioxus (Branchiostoma belcheri): Implications for their evolutionary conservation , 2009, Science in China Series C: Life Sciences.

[124]  K. Nave,et al.  Neurod1 is essential for the survival and maturation of adult-born neurons , 2009, Nature Neuroscience.

[125]  G. Stein,et al.  Pluripotency: Toward a gold standard for human ES and iPS cells , 2009, Journal of cellular physiology.

[126]  Yandan Yao,et al.  MiR-21 Indicates Poor Prognosis in Tongue Squamous Cell Carcinomas as an Apoptosis Inhibitor , 2009, Clinical Cancer Research.

[127]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[128]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[129]  K. Kaestner,et al.  Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. , 2009, Developmental cell.

[130]  Michael S. Becker,et al.  Fate tracing reveals the endothelial origin of hematopoietic stem cells. , 2008, Cell stem cell.

[131]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[132]  Frank J. Slack,et al.  MicroRNAs and cancer: An overview , 2008, Cell cycle.

[133]  N. Colburn,et al.  MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene , 2008, Oncogene.

[134]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[135]  L. Zon,et al.  Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. , 2007, Cell stem cell.

[136]  B. Hogan,et al.  Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm , 2007, Development.

[137]  R. Shivdasani MicroRNAs: regulators of gene expression and cell differentiation. , 2006, Blood.

[138]  M. Wegner,et al.  The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons , 2006, Nature Neuroscience.

[139]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[140]  Lena Smirnova,et al.  Regulation of miRNA expression during neural cell specification , 2005, The European journal of neuroscience.

[141]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[142]  S. Ramaswamy,et al.  Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis , 2004, Cell.

[143]  R. Beddington,et al.  Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas , 2004, Development.

[144]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[145]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[146]  David Thissen,et al.  Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons , 2002 .

[147]  K. Kaestner,et al.  Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. , 2002, Gastroenterology.

[148]  W. Böcker [WHO classification of breast tumors and tumors of the female genital organs: pathology and genetics]. , 2002, Verhandlungen der Deutschen Gesellschaft fur Pathologie.

[149]  C. Goding,et al.  Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. , 2000, Genes & development.

[150]  J. Beckmann,et al.  Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes. , 2000, Human molecular genetics.

[151]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[152]  James Hanken,et al.  There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development , 1997, Anatomy and Embryology.

[153]  Simon Conway Morris,et al.  The shape of life, genes, development, and the evolution of animal form , 1996 .

[154]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[155]  I. Jolliffe Principal Component Analysis , 2005 .

[156]  G. B. Pierce,et al.  Teratomas: definitions and terminology. , 1975 .

[157]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[158]  M. Misrabi The ependymal cells. , 1969, Journal of Anatomy.

[159]  L. C. Stevens The biology of teratomas. , 1967, Advances in morphogenesis.

[160]  L. C. Stevens The biology of teratomas including evidence indicating their origin form primordial germ cells. , 1962, L' Annee biologique.

[161]  W. Thurlbeck,et al.  Solid teratoma of the ovary. A clinicopathological analysis of 9 cases , 1960, Cancer.

[162]  J. F. Campbell Solid teratoma of the ovary. , 1947, Canadian Medical Association journal.

[163]  F. Wilcoxon,et al.  Individual comparisons of grouped data by ranking methods. , 1946, Journal of economic entomology.

[164]  R. A. Willis The histogenesis of neural tissue in teratomas , 1936 .

[165]  R. A. Willis The structure of teratomata , 1935 .