Mitochondrial complexome reveals quality-control pathways of protein import

[1]  H. McBride,et al.  MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control , 2021, Nature Cell Biology.

[2]  C. Kraft,et al.  Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context , 2021, Cell metabolism.

[3]  S. Guerrero-Castillo,et al.  Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome , 2021, The EMBO journal.

[4]  Chuangye Yan,et al.  Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex , 2021, Science.

[5]  I. Wittig,et al.  Complexome Profiling: Assembly and Remodeling of Protein Complexes , 2021, International journal of molecular sciences.

[6]  T. Langer,et al.  ComplexFinder: A software package for the analysis of native protein complex fractionation experiments. , 2021, Biochimica et biophysica acta. Bioenergetics.

[7]  M. Huynen,et al.  CEDAR, an online resource for the reporting and exploration of complexome profiling data. , 2021, Biochimica et biophysica acta. Bioenergetics.

[8]  B. Nagy,et al.  Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure. , 2021, Biochimica et biophysica acta. General subjects.

[9]  O. Nureki,et al.  Mitochondrial sorting and assembly machinery operates by β-barrel switching , 2021, Nature.

[10]  Apekshya Panda,et al.  MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations , 2020, Nucleic Acids Res..

[11]  Uwe Schulte,et al.  CEDAR, an online resource for the reporting and exploration of complexome profiling data , 2020, bioRxiv.

[12]  T. Becker,et al.  Quality control of the mitochondrial proteome , 2020, Nature Reviews Molecular Cell Biology.

[13]  Qing Li,et al.  Structure of the mitochondrial TIM22 complex from yeast , 2020, Cell Research.

[14]  S. Jentsch,et al.  Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions , 2020, Cell reports.

[15]  Cole M. Haynes,et al.  Folding the Mitochondrial UPR into the Integrated Stress Response. , 2020, Trends in cell biology.

[16]  M. Schuldiner,et al.  Cytosolic Events in the Biogenesis of Mitochondrial Proteins. , 2020, Trends in biochemical sciences.

[17]  N. Pfanner,et al.  The Mitochondrial Import Complex MIM Functions as Main Translocase for α-Helical Outer Membrane Proteins. , 2020, Cell reports.

[18]  S. Buchanan,et al.  Structural insight into mitochondrial β-barrel outer membrane protein biogenesis , 2020, bioRxiv.

[19]  A. Y. Sung,et al.  Systems Biochemistry Approaches to Defining Mitochondrial Protein Function. , 2020, Cell metabolism.

[20]  E. Verschueren,et al.  Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. , 2020, Molecular cell.

[21]  N. Pfanner,et al.  Studying protein import into mitochondria. , 2020, Methods in cell biology.

[22]  Chuangye Yan,et al.  Cryo-EM structure of the human mitochondrial translocase TIM22 complex , 2019, Cell Research.

[23]  R. Sprengel,et al.  An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity , 2019, Neuron.

[24]  E. Park,et al.  Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution , 2019, Nature Structural & Molecular Biology.

[25]  N. Klugbauer,et al.  High-Resolution Complexome Profiling by Cryoslicing BN-MS Analysis. , 2019, Journal of visualized experiments : JoVE.

[26]  T. Ando,et al.  Structure of the mitochondrial import gate reveals distinct preprotein paths , 2019, Nature.

[27]  R. Youle Mitochondria—Striking a balance between host and endosymbiont , 2019, Science.

[28]  D. Gottschling,et al.  Rsp5 and Mdm30 reshape the mitochondrial network in response to age-induced vacuole stress , 2019, Molecular biology of the cell.

[29]  S. Oeljeklaus,et al.  Mitochondrial protein translocation-associated degradation , 2019, Nature.

[30]  V. Beneš,et al.  Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme , 2019, Nature Cell Biology.

[31]  N. Pfanner,et al.  Dual Role of Mitochondrial Porin in Metabolite Transport across the Outer Membrane and Protein Transfer to the Inner Membrane. , 2019, Molecular cell.

[32]  N. Pfanner,et al.  Mitochondrial proteins: from biogenesis to functional networks , 2019, Nature Reviews Molecular Cell Biology.

[33]  M. Ott,et al.  The basic machineries for mitochondrial protein quality control. , 2019, Mitochondrion.

[34]  P. Rehling,et al.  Motor recruitment to the TIM23 channel’s lateral gate restricts polypeptide release into the inner membrane , 2018, Nature Communications.

[35]  Anton Khmelinskii,et al.  Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins , 2018, BMC Biology.

[36]  C. Hill,et al.  Vms1p is a release factor for the ribosome-associated quality control complex , 2018, Nature Communications.

[37]  A. Amon,et al.  MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress , 2018, Science.

[38]  Kurt M. Reichermeier,et al.  Vms1/Ankzf1 peptidyl-tRNA hydrolase releases nascent chains from stalled ribosomes , 2018, Nature.

[39]  F. Hartl,et al.  Cytosolic Protein Vms1 Links Ribosome Quality Control to Mitochondrial and Cellular Homeostasis , 2017, Cell.

[40]  M. Schuldiner,et al.  Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale , 2017, Cell reports.

[41]  A. Chacińska,et al.  Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system , 2017, Open Biology.

[42]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[43]  N. Pfanner,et al.  Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10 , 2016, Nature Communications.

[44]  R. Hegde,et al.  Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation , 2016, Molecular cell.

[45]  Alan Brown,et al.  Organization and Regulation of Mitochondrial Protein Synthesis. , 2016, Annual review of biochemistry.

[46]  M. Dong,et al.  Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes , 2016, Nature.

[47]  N. Pfanner,et al.  Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins , 2016, Cell metabolism.

[48]  S. Jentsch,et al.  Identification of Substrates of Protein-Group SUMOylation. , 2016, Methods in molecular biology.

[49]  L. Tretter,et al.  Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. , 2015, Free radical biology & medicine.

[50]  Uwe Schulte,et al.  Cryo-slicing Blue Native-Mass Spectrometry (csBN-MS), a Novel Technology for High Resolution Complexome Profiling* , 2015, Molecular & Cellular Proteomics.

[51]  Maciej Lirski,et al.  Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol , 2015, Nature.

[52]  Xin Jie Chen,et al.  A Cytosolic Network Suppressing Mitochondria-Mediated Proteostatic Stress and Cell Death , 2015, Nature.

[53]  S. Oeljeklaus,et al.  Mitochondrial Heat Shock Protein (Hsp) 70 and Hsp10 Cooperate in the Formation of Hsp60 Complexes* , 2015, The Journal of Biological Chemistry.

[54]  Ina Koch,et al.  NOVA: a software to analyze complexome profiling data , 2015, Bioinform..

[55]  M. Schuldiner,et al.  OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria , 2014, Nature Communications.

[56]  A. Imhof,et al.  The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase , 2014, Molecular biology of the cell.

[57]  R. Deshaies,et al.  Rsp5/Nedd4 is the major ubiquitin ligase that targets cytosolic misfolded proteins upon heat-stress , 2014, Nature Cell Biology.

[58]  E. Rugarli,et al.  DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. , 2014, Cell metabolism.

[59]  N. Pfanner,et al.  The presequence pathway is involved in protein sorting to the mitochondrial outer membrane , 2014, EMBO reports.

[60]  R. Lill,et al.  Crystal Structures of Nucleotide-Free and Glutathione-Bound Mitochondrial ABC Transporter Atm1 , 2014, Science.

[61]  N. Pfanner,et al.  Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. , 2013, Cell metabolism.

[62]  S. Oeljeklaus,et al.  A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase , 2013, Molecular biology of the cell.

[63]  Stephan Kutik,et al.  Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation , 2013, Cell.

[64]  W. Baumeister,et al.  Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane , 2012, The Journal of cell biology.

[65]  D. Winge,et al.  Reprint of: Biogenesis of the cytochrome bc(1) complex and role of assembly factors. , 2012, Biochimica et biophysica acta.

[66]  C. Czupalla,et al.  Saccharomyces cerevisiae Porin Pore Forms Complexes with Mitochondrial Outer Membrane Proteins Om14p and Om45p , 2012, The Journal of Biological Chemistry.

[67]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[68]  D. Winge,et al.  Biogenesis of the cytochrome bc(1) complex and role of assembly factors. , 2012, Biochimica et biophysica acta.

[69]  N. Pfanner,et al.  Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. , 2011, Molecular cell.

[70]  B. Fakler,et al.  Extending the Dynamic Range of Label-free Mass Spectrometric Quantification of Affinity Purifications* , 2011, Molecular & Cellular Proteomics.

[71]  S. Franken,et al.  Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease , 2011, Molecular biology of the cell.

[72]  B. Warscheid,et al.  Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria , 2010, The Journal of cell biology.

[73]  T. Endo,et al.  Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40 , 2010, EMBO reports.

[74]  N. Pfanner,et al.  Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. , 2010, Journal of molecular biology.

[75]  H. Schägger,et al.  Mass Estimation of Native Proteins by Blue Native Electrophoresis , 2010, Molecular & Cellular Proteomics.

[76]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[77]  N. Pfanner,et al.  Mitochondrial F1Fo-ATP synthase: the small subunits e and g associate with monomeric complexes to trigger dimerization. , 2009, Journal of molecular biology.

[78]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[79]  S. Emr,et al.  Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface , 2008, Cell.

[80]  B. Warscheid,et al.  Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly , 2007, The EMBO journal.

[81]  N. Krogan,et al.  Ubiquitination Screen Using Protein Microarrays for Comprehensive Identification of Rsp5 Substrates in Yeast , 2022 .

[82]  I. Behrmann,et al.  A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. , 2007, Journal of immunological methods.

[83]  T. Ishii,et al.  Yeast Pth2 is a UBL domain‐binding protein that participates in the ubiquitin–proteasome pathway , 2006, The EMBO journal.

[84]  J. Shaw,et al.  The novel F-box protein Mfb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. , 2006, Molecular biology of the cell.

[85]  T. Langer,et al.  Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1 , 2006, The Journal of cell biology.

[86]  S. Kelly,et al.  A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. , 2006, Structure.

[87]  Albert Sickmann,et al.  Pam17 Is Required for Architecture and Translocation Activity of the Mitochondrial Protein Import Motor , 2005, Molecular and Cellular Biology.

[88]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[89]  D. Mokranjac,et al.  Tob38, a novel essential component in the biogenesis of β‐barrel proteins of mitochondria , 2004, EMBO reports.

[90]  H. Pelham,et al.  Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins , 2004, The EMBO journal.

[91]  R. Kölling,et al.  The yeast deubiquitinating enzyme Ubp16 is anchored to the outer mitochondrial membrane , 2003, FEBS letters.

[92]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[93]  P. Plateau,et al.  Peptidyl-tRNA hydrolase from Sulfolobus solfataricus. , 2003, Nucleic acids research.

[94]  D. Söll,et al.  Orthologs of a novel archaeal and of the bacterial peptidyl–tRNA hydrolase are nonessential in yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  M. Funakoshi,et al.  Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Barrientos,et al.  Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome , 2002, The EMBO journal.

[97]  S. Jentsch,et al.  Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing , 2000, Cell.

[98]  V. Kushnirov Rapid and reliable protein extraction from yeast , 2000, Yeast.

[99]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[100]  K. Siegers,et al.  Epitope tagging of yeast genes using a PCR‐based strategy: more tags and improved practical routines , 1999, Yeast.

[101]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[102]  K. Dietmeier,et al.  The Sorting Route of Cytochrome b 2Branches from the General Mitochondrial Import Pathway at the Preprotein Translocase of the Inner Membrane* , 1997, The Journal of Biological Chemistry.

[103]  A. Tzagoloff,et al.  In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex , 1991, Molecular and cellular biology.

[104]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.