Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data
暂无分享,去创建一个
Jacques R. Ernst | Alan G. Green | Hansruedi Maurer | Klaus Holliger | A. Green | H. Maurer | J. Ernst | K. Holliger | acques R. Ernst
[1] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[2] L. Johnson,et al. Application of diffraction tomography to fracture detection , 1992 .
[3] G. Schuster,et al. Electromagnetic velocity inversion using 2-D Maxwell’s equations , 1996 .
[4] Chaoguang Zhou,et al. Radar-diffraction tomography using the modified quasi-linear approximation , 2000, IEEE Trans. Geosci. Remote. Sens..
[5] O. Olsson,et al. BOREHOLE RADAR APPLIED TO THE CHARACTERIZATION OF HYDRAULICALLY CONDUCTIVE FRACTURE ZONES IN CRYSTALLINE ROCK1 , 1992 .
[6] Weng Cho Chew,et al. An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..
[7] A. Green,et al. Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes , 2006 .
[8] K. Holliger,et al. Numerical modeling of borehole georadar data , 2002 .
[9] K. Karasaki,et al. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland , 1990 .
[10] P. Mora. Elastic wave‐field inversion of reflection and transmission data , 1988 .
[11] R. Shipp,et al. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .
[12] P. Fullagar,et al. Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, Canada , 2000 .
[13] M. Chouteau,et al. Massive sulphide delineation using borehole radar: tests at the McConnell nickel deposit, Sudbury, Ontario , 2001 .
[14] D. Vasco,et al. Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems , 1998 .
[15] A. Pica,et al. Nonliner inversion of seismic reflection data in a laterally invariant medium , 1990 .
[16] Weng Cho Chew,et al. Comparison of the born iterative method and tarantola's method for an electromagnetic time‐domain inverse problem , 1991, Int. J. Imaging Syst. Technol..
[17] W. Chew,et al. Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations , 2004 .
[18] W. Barrash,et al. Significance of porosity for stratigraphy and textural composition in subsurface, coarse fluvial deposits: Boise Hydrogeophysical Research Site , 2004 .
[19] J. Robertsson,et al. Numerical properties of staggered finite-difference solutions of Maxwell's equations for ground-penetrating radar modeling , 1996 .
[20] S. Carlsten,et al. Radar techniques for indicating internal erosion in embankment dams , 1995 .
[21] Zhonghua Wu,et al. Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media , 1996 .
[22] A. Green,et al. Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses , 2006 .
[23] W. Barrash,et al. Hierarchical geostatistics and multifacies systems: Boise Hydrogeophysical Research Site, Boise, Idaho , 2002 .
[24] Weng Cho Chew,et al. Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy Earth , 2000, IEEE Trans. Geosci. Remote. Sens..
[25] A. Tarantola,et al. Nonlinear Inversion of Seismic Reflection Data , 1984 .
[26] A. Tarantola. A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .
[27] N. Bleistein. Two-and-One-Half Dimensional In-Plane Wave Propagation. , 1984 .
[28] Mehmet Ali C.Tura. Application of Diffraction Tomography to Fracture Detection , 1991 .
[29] A. Green,et al. Realistic FDTD modelling of borehole georadar antenna radiation: methodolgy and application , 2006 .
[30] A. T. Hoop,et al. Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids, Elastic Waves in Solids, Electromagnetic Waves , 2001 .
[31] Bounding Seismic Velocities Using a Tomographic Method , 1990 .
[32] R. Knight,et al. Effect of antennas on velocity estimates obtained from crosshole GPR data , 2005 .
[33] S. Greenhalgh,et al. Crosshole seismic inversion with normalized full‐waveform amplitude data , 2003 .
[34] Michael D. Knoll,et al. Multivariate analysis of cross‐hole georadar velocity and attenuation tomograms for aquifer zonation , 2004 .
[35] D. Tweeton,et al. Improved crosshole radar tomography by using direct and reflected arrival times , 2001 .
[36] P. Mora. Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .
[37] R. Pratt. Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .
[38] Weng Cho Chew,et al. Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..
[39] W. Chew,et al. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.
[40] R. Pratt. Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .
[41] R. Pratt,et al. INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .
[42] M. Worthington,et al. Resolution limits in ray tomography due to wave behavior: Numerical experiments , 1993 .
[43] M. Toksöz,et al. Simultaneous reconstruction of permittivity and conductivity for crosshole geometries , 1990 .
[44] Siyuan Chen,et al. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method , 2001, IEEE Trans. Geosci. Remote. Sens..
[45] Takashi Takenaka,et al. Time-domain inverse scattering method for cross-borehole radar imaging , 2002, IEEE Trans. Geosci. Remote. Sens..
[46] Z. Bing,et al. Crosshole acoustic velocity imaging with full-waveform spectral data: 2.5-D numerical simulations , 1998 .
[47] Binzhong Zhou,et al. Radio frequency tomography trial at Mt Isa Mine , 1998 .
[48] Jacques R. Ernst,et al. Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.
[49] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[50] P. Donaldson,et al. Geophysical Surveys across the Boise Hydrogeophysical Research Site To Determine Geophysical Parameters of a Shallow, Alluvial Aquifer (1999) , 1999 .
[51] R. Pratt. Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .
[52] H. Maurer,et al. Full-waveform Inversion of Crosshole Georadar Data , 2005 .
[53] S. Kuroda,et al. Full Waveform Inversion Algorithm For Interpreting Cross-borehole GPR Data , 2005 .
[54] W. P. Clement,et al. Crosshole Radar Tomography in a Fluvial Aquifer Near Boise, Idaho , 2006 .
[55] K. Nihei,et al. Viscoacoustic wave form inversion of transmission data for velocity and attenuation , 2004 .
[56] H. Maurer,et al. Ray-based amplitude tomography for crosshole georadar data: a numerical assessment , 2001 .
[57] W. Chew,et al. Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space , 2002 .
[58] W. Chew,et al. Study of some practical issues in inversion with the Born iterative method using time-domain data , 1993 .
[59] P. Routh,et al. Fresnel volume georadar attenuation‐difference tomography , 2005 .