Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data

Crosshole radar tomography is a useful tool in diverse investigations in geology, hydrogeology, and engineering. Conventional tomograms provided by standard ray-based techniques have limited resolution, primarily because only a fraction of the information contained in the radar data i.e., thefirst-arrivaltimesandmaximumfirst-cycleamplitudesis included in the inversion. To increase the resolution of radar tomograms,wehavedevelopedaversatilefull-waveforminversion scheme that is based on a finite-difference time-domain solution of Maxwell’s equations. This scheme largely accountsforthe3Dnatureofradar-wavepropagationandincludes an efficient method for extracting the source wavelet from the radar data.After demonstrating the potential of the newschemeontworealisticsyntheticdatasets,weapplyitto two crosshole field data sets acquired in very different geologic/hydrogeologic environments. These are the first applications of full-waveform tomography to observed crosshole radar data.The resolution of all full-waveform tomograms is showntobemarkedlysuperiortothatoftheassociatedraytomograms. Small subsurface features a fraction of the dominant radar wavelength and boundaries between distinct geological/hydrological units are sharply imaged in the fullwaveformtomograms.

[1]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[2]  L. Johnson,et al.  Application of diffraction tomography to fracture detection , 1992 .

[3]  G. Schuster,et al.  Electromagnetic velocity inversion using 2-D Maxwell’s equations , 1996 .

[4]  Chaoguang Zhou,et al.  Radar-diffraction tomography using the modified quasi-linear approximation , 2000, IEEE Trans. Geosci. Remote. Sens..

[5]  O. Olsson,et al.  BOREHOLE RADAR APPLIED TO THE CHARACTERIZATION OF HYDRAULICALLY CONDUCTIVE FRACTURE ZONES IN CRYSTALLINE ROCK1 , 1992 .

[6]  Weng Cho Chew,et al.  An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..

[7]  A. Green,et al.  Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes , 2006 .

[8]  K. Holliger,et al.  Numerical modeling of borehole georadar data , 2002 .

[9]  K. Karasaki,et al.  Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland , 1990 .

[10]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[11]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[12]  P. Fullagar,et al.  Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, Canada , 2000 .

[13]  M. Chouteau,et al.  Massive sulphide delineation using borehole radar: tests at the McConnell nickel deposit, Sudbury, Ontario , 2001 .

[14]  D. Vasco,et al.  Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems , 1998 .

[15]  A. Pica,et al.  Nonliner inversion of seismic reflection data in a laterally invariant medium , 1990 .

[16]  Weng Cho Chew,et al.  Comparison of the born iterative method and tarantola's method for an electromagnetic time‐domain inverse problem , 1991, Int. J. Imaging Syst. Technol..

[17]  W. Chew,et al.  Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations , 2004 .

[18]  W. Barrash,et al.  Significance of porosity for stratigraphy and textural composition in subsurface, coarse fluvial deposits: Boise Hydrogeophysical Research Site , 2004 .

[19]  J. Robertsson,et al.  Numerical properties of staggered finite-difference solutions of Maxwell's equations for ground-penetrating radar modeling , 1996 .

[20]  S. Carlsten,et al.  Radar techniques for indicating internal erosion in embankment dams , 1995 .

[21]  Zhonghua Wu,et al.  Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media , 1996 .

[22]  A. Green,et al.  Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses , 2006 .

[23]  W. Barrash,et al.  Hierarchical geostatistics and multifacies systems: Boise Hydrogeophysical Research Site, Boise, Idaho , 2002 .

[24]  Weng Cho Chew,et al.  Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy Earth , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  A. Tarantola,et al.  Nonlinear Inversion of Seismic Reflection Data , 1984 .

[26]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[27]  N. Bleistein Two-and-One-Half Dimensional In-Plane Wave Propagation. , 1984 .

[28]  Mehmet Ali C.Tura Application of Diffraction Tomography to Fracture Detection , 1991 .

[29]  A. Green,et al.  Realistic FDTD modelling of borehole georadar antenna radiation: methodolgy and application , 2006 .

[30]  A. T. Hoop,et al.  Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids, Elastic Waves in Solids, Electromagnetic Waves , 2001 .

[31]  Bounding Seismic Velocities Using a Tomographic Method , 1990 .

[32]  R. Knight,et al.  Effect of antennas on velocity estimates obtained from crosshole GPR data , 2005 .

[33]  S. Greenhalgh,et al.  Crosshole seismic inversion with normalized full‐waveform amplitude data , 2003 .

[34]  Michael D. Knoll,et al.  Multivariate analysis of cross‐hole georadar velocity and attenuation tomograms for aquifer zonation , 2004 .

[35]  D. Tweeton,et al.  Improved crosshole radar tomography by using direct and reflected arrival times , 2001 .

[36]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[37]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[38]  Weng Cho Chew,et al.  Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[40]  R. Pratt Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .

[41]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[42]  M. Worthington,et al.  Resolution limits in ray tomography due to wave behavior: Numerical experiments , 1993 .

[43]  M. Toksöz,et al.  Simultaneous reconstruction of permittivity and conductivity for crosshole geometries , 1990 .

[44]  Siyuan Chen,et al.  Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method , 2001, IEEE Trans. Geosci. Remote. Sens..

[45]  Takashi Takenaka,et al.  Time-domain inverse scattering method for cross-borehole radar imaging , 2002, IEEE Trans. Geosci. Remote. Sens..

[46]  Z. Bing,et al.  Crosshole acoustic velocity imaging with full-waveform spectral data: 2.5-D numerical simulations , 1998 .

[47]  Binzhong Zhou,et al.  Radio frequency tomography trial at Mt Isa Mine , 1998 .

[48]  Jacques R. Ernst,et al.  Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[50]  P. Donaldson,et al.  Geophysical Surveys across the Boise Hydrogeophysical Research Site To Determine Geophysical Parameters of a Shallow, Alluvial Aquifer (1999) , 1999 .

[51]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[52]  H. Maurer,et al.  Full-waveform Inversion of Crosshole Georadar Data , 2005 .

[53]  S. Kuroda,et al.  Full Waveform Inversion Algorithm For Interpreting Cross-borehole GPR Data , 2005 .

[54]  W. P. Clement,et al.  Crosshole Radar Tomography in a Fluvial Aquifer Near Boise, Idaho , 2006 .

[55]  K. Nihei,et al.  Viscoacoustic wave form inversion of transmission data for velocity and attenuation , 2004 .

[56]  H. Maurer,et al.  Ray-based amplitude tomography for crosshole georadar data: a numerical assessment , 2001 .

[57]  W. Chew,et al.  Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space , 2002 .

[58]  W. Chew,et al.  Study of some practical issues in inversion with the Born iterative method using time-domain data , 1993 .

[59]  P. Routh,et al.  Fresnel volume georadar attenuation‐difference tomography , 2005 .