Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization

Abstract Among the existing global optimization algorithms, Particle Swarm Optimization (PSO) is one of the most effective methods for non-linear and complex high-dimensional problems. Since PSO performance strongly depends on the choice of its settings (i.e., inertia, cognitive and social factors, minimum and maximum velocity), Fuzzy Logic (FL) was previously exploited to select these values. So far, FL-based implementations of PSO aimed at the calculation of a unique settings for the whole swarm. In this work we propose a novel self-tuning algorithm—called Fuzzy Self-Tuning PSO (FST-PSO)—which exploits FL to calculate the inertia, cognitive and social factor, minimum and maximum velocity independently for each particle, thus realizing a complete settings-free version of PSO. The novelty and strength of FST-PSO lie in the fact that it does not require any expertise in PSO functioning, since the behavior of every particle is automatically and dynamically adjusted during the optimization. We compare the performance of FST-PSO with standard PSO, Proactive Particles in Swarm Optimization, Artificial Bee Colony, Covariance Matrix Adaptation Evolution Strategy, Differential Evolution and Genetic Algorithms. We empirically show that FST-PSO can basically outperform all tested algorithms with respect to the convergence speed and is competitive concerning the best solutions found, noticeably with a reduced computational effort.

[1]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  Ajith Abraham,et al.  Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning , 2009, Foundations of Computational Intelligence.

[5]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[6]  Marco S. Nobile,et al.  The impact of particles initialization in PSO: Parameter estimation as a case in point , 2015, 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[7]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Control , 1985 .

[8]  Marco S. Nobile,et al.  Proactive Particles in Swarm Optimization: A settings-free algorithm for real-parameter single objective optimization problems , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[9]  Y. Rahmat-Samii,et al.  Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.

[10]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[11]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[12]  A. Rezaee Jordehi,et al.  Parameter selection in particle swarm optimisation: a survey , 2013, J. Exp. Theor. Artif. Intell..

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  Oscar Castillo,et al.  Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics - Theory and Applications , 2015, Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics.

[15]  Marco S. Nobile,et al.  Reboot strategies in particle swarm optimization and their impact on parameter estimation of biochemical systems , 2017, 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[16]  Giancarlo Mauri,et al.  A Comparison of Genetic Algorithms and Particle Swarm Optimization for Parameter Estimation in Stochastic Biochemical Systems , 2009, EvoBIO.

[17]  W. Pedrycz Why triangular membership functions , 1994 .

[18]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[19]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[20]  Leonardo Vanneschi,et al.  A new technique for dynamic size populations in genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[21]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[22]  Teresa Wu,et al.  An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods , 2013, IEEE Transactions on Evolutionary Computation.

[23]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[24]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[27]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[28]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[29]  Luis Magdalena,et al.  Fuzzy Rule-Based Systems , 2015, Handbook of Computational Intelligence.

[30]  Andreas Zell,et al.  Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .

[31]  Giancarlo Mauri,et al.  A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series , 2012, EvoBIO.

[32]  Giancarlo Mauri,et al.  Proactive Particles in Swarm Optimization: A self-tuning algorithm based on Fuzzy Logic , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  Dong-ping Tian,et al.  Fuzzy Particle Swarm Optimization Algorithm , 2009, 2009 International Joint Conference on Artificial Intelligence.

[35]  Gregor Papa,et al.  Parameter-less algorithm for evolutionary-based optimization , 2013, Comput. Optim. Appl..

[36]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .