Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization
暂无分享,去创建一个
Giancarlo Mauri | Marco S. Nobile | Paolo Cazzaniga | Daniela Besozzi | Riccardo Colombo | Gabriella Pasi | G. Mauri | D. Besozzi | P. Cazzaniga | G. Pasi | R. Colombo
[1] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[2] Anne Auger,et al. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.
[3] R. Fletcher. Practical Methods of Optimization , 1988 .
[4] Ajith Abraham,et al. Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning , 2009, Foundations of Computational Intelligence.
[5] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[6] Marco S. Nobile,et al. The impact of particles initialization in PSO: Parameter estimation as a case in point , 2015, 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[7] Michio Sugeno,et al. Industrial Applications of Fuzzy Control , 1985 .
[8] Marco S. Nobile,et al. Proactive Particles in Swarm Optimization: A settings-free algorithm for real-parameter single objective optimization problems , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).
[9] Y. Rahmat-Samii,et al. Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.
[10] Andries Petrus Engelbrecht,et al. A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..
[11] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[12] A. Rezaee Jordehi,et al. Parameter selection in particle swarm optimisation: a survey , 2013, J. Exp. Theor. Artif. Intell..
[13] Riccardo Poli,et al. Particle swarm optimization , 1995, Swarm Intelligence.
[14] Oscar Castillo,et al. Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics - Theory and Applications , 2015, Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics.
[15] Marco S. Nobile,et al. Reboot strategies in particle swarm optimization and their impact on parameter estimation of biochemical systems , 2017, 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[16] Giancarlo Mauri,et al. A Comparison of Genetic Algorithms and Particle Swarm Optimization for Parameter Estimation in Stochastic Biochemical Systems , 2009, EvoBIO.
[17] W. Pedrycz. Why triangular membership functions , 1994 .
[18] Carlos A. Coello Coello,et al. A comparative study of differential evolution variants for global optimization , 2006, GECCO.
[19] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[20] Leonardo Vanneschi,et al. A new technique for dynamic size populations in genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[21] Travis E. Oliphant,et al. Python for Scientific Computing , 2007, Computing in Science & Engineering.
[22] Teresa Wu,et al. An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods , 2013, IEEE Transactions on Evolutionary Computation.
[23] Riccardo Poli,et al. Analysis of the publications on the applications of particle swarm optimisation , 2008 .
[24] Dervis Karaboga,et al. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..
[25] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[26] Anne Auger,et al. Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..
[27] R. Eberhart,et al. Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[28] J. Yen,et al. Fuzzy Logic: Intelligence, Control, and Information , 1998 .
[29] Luis Magdalena,et al. Fuzzy Rule-Based Systems , 2015, Handbook of Computational Intelligence.
[30] Andreas Zell,et al. Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .
[31] Giancarlo Mauri,et al. A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series , 2012, EvoBIO.
[32] Giancarlo Mauri,et al. Proactive Particles in Swarm Optimization: A self-tuning algorithm based on Fuzzy Logic , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
[33] James Kennedy,et al. Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.
[34] Dong-ping Tian,et al. Fuzzy Particle Swarm Optimization Algorithm , 2009, 2009 International Joint Conference on Artificial Intelligence.
[35] Gregor Papa,et al. Parameter-less algorithm for evolutionary-based optimization , 2013, Comput. Optim. Appl..
[36] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .